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Abstract

We perform a comprehensive neighborhood level analysis of housing supply. Predictions of floorspace

and housing unit supply elasticities using our estimates average 0.5 and 0.3 across all urban neighbor-

hoods in the US, exhibiting greater variation within than between metro regions. New construction

accounts for about 50 percent of unit supply responses, with important additional roles for teardowns

and renovations. Supply responses grow with CBD distance, mostly from the increasing availability of

undeveloped land, flatter land, and less regulation. Identification comes from variation in labor demand

shocks to commuting destinations, as aggregated using insights from a quantitative spatial equilibrium

model.
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1 Introduction

Quantification of housing supply elasticities at a microgeographic scale is required to analyze a wide range of

phenomena that involve neighborhood level variation in housing demand within cities and regions. Targeted

neighborhood investment for economic development (Busso, Gregory, & Kline, 2013; Hanson, 2009), new

transportation infrastructure (Severen, 2019), changes in labor demand conditions (Fogli & Guerrieri, 2019),

and changes in local amenities and public goods (Couture, Gaubert, Handbury, & Hurst, 2019; Baum-Snow

& Hartley, 2020; Calabrese, Epple, & Romano, 2011) all induce shifts in housing demand that vary across

neighborhoods. The extent to which these changes affect the welfare of renters versus owners depends

crucially on neighborhood level estimates of housing supply elasticities. In addition, such elasticities are

central for evaluating the efficacy of housing affordability policies (Favilukis, Mabille, & Van Nieuwerburgh,

2023; Davis, Gregory, & Hartley, 2019), understanding spatial variation in booms and busts within metro

areas (Glaeser, Gottlieb, & Tobio, 2012; Guerrieri, Hartley, & Hurst, 2013; Genesove & Han, 2013), and the

extent to which urban growth takes the form of densification or sprawl (Glaeser, Gyourko, & Saks, 2005).

While the existing literature documents large differences in housing supply elasticities between cities (Saiz,

2010), little evidence exists on how housing supply elasticities differ within cities. In this paper, we provide

the first comprehensive examination of housing supply at the neighborhood level, facilitating quantitative

analysis of a wide range of neighborhood level phenomena and place based policies.

This paper conceptually and empirically examines housing supply and its components for all residential

census tracts in US metropolitan areas. Our investigation delivers new evidence on how floorspace supply

and housing unit supply decompose into teardowns, renovation of existing buildings, and new construction

on newly developed and redeveloped land. Moreover, we quantify how each of the associated supply elastic-

ities differ within cities as functions of distance to the center, land availability, building density, and zoning

restrictions. As in Severen (2019), we use Bartik (1991) type variation in labor demand shocks to com-

muting destinations within metro areas for identification. Insights from a quantitative spatial equilibrium

model help to conceptualize this identification strategy. To account for differences between metro areas, our

analysis incorporates a finite mixture model (FMM) empirical setup, in which parameters that govern tract

supply elasticities are allowed to flexibly differ between metro areas as functions of metro land unavailable

for development, regulation, and developed land. Central to our analysis are tract level measures of hous-

ing supply components and price indices for housing services that are newly constructed using the Zillow

ZTRAX assessment and transactions data sets (Zillow, 2017), married with newly organized information on
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land cover. Our analysis is carried out in changes for the 2000-2010 period.

Across urban census tracts in our estimation sample, we estimate an average floorspace supply elasticity

of 0.42, an average housing units supply elasticity of 0.35 and an average land development elasticity of 0.09.

Within floorspace and unit supply, we separate out responses to demand shocks due to new construction,

reductions in teardowns and renovation of existing buildings. We find that new construction accounts for

55 percent of unit supply and 69 percent of floorspace supply responses, with the remainder split roughly

evenly between reduced teardowns and expansion or reconfiguration of existing structures. Only a small

fraction of this new construction response comes on parcels that are already developed.

We uncover striking within metro area differences in neighborhood-level housing supply elasticities as

functions of location, available land, topography and regulation. Land development, unit and floorspace

supply responses all grow with distance from central business districts (CBDs), flatten out in suburban areas

and then grow again at urban fringes. At CBDs, new construction accounts for a smaller share of these

unit and floorspace elasticities than in the average tract. Corresponding suburban elasticities are similar to

the overall average supply elasticities cited above. Positive CBD distance profiles for supply elasticities are

mainly driven by the fact that the fraction of land that is initially developed decreases moving away from

CBDs. Tracts with more flat land and less stringent regulations also exhibit more elastic supply. Teardowns

and renovation of existing units are in general not significantly related to CBD distance and developed

fraction, though price growth spurs more new construction to replace teardowns on flatter land.

Using parameters estimated with data from about 50 percent of census tracts nationwide in the US,

we predict supply elasticities for all 50,410 tracts in 306 metro regions. Looking across all urban census

tracts nationwide and accommodating both tract and metro region variation in factors that influence supply

elasticities, predicted elasticities range from 0.14 to 0.44 for for unit supply and 0.33 to 0.70 for floorspace

supply in 25th and 75th percentile neighborhoods, with means of 0.29 and 0.51 respectively. Among the

predicted elasticities, within-metro area variation exceeds the corresponding variation between metro areas.

We confirm evidence in Saiz (2010) that supply elasticities are decreasing in metro area land unavailable

for development, existing development intensity, and regulation, even conditional on these tract level influ-

encers.

We approach recovery of neighborhood level housing supply elasticities as the fundamentally reduced

form problem of identifying coefficients in regressions of changes in tract level housing quantities on

changes in a tract level home price index. The reduced form estimation is microfounded on a stylized
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model of neighborhood new construction supply that explicitly distinguishes between land development and

intensity of construction conditional on development. The housing production literature, notably Ahlfeldt

and McMillen (2014) and Combes, Duranton, and Gobillon (2021), mostly focuses on developers’ choices

of capital intensity conditional on land development, leaving out consideration of the parcel selection mar-

gin. Our reduced form estimates imply new construction floorspace relative to land development supply

elasticities of between 2 and 4, consistent with recent land share estimates of less than 0.34 in the context

of standard models of housing production. In our model, the extensive land development margin of supply

also plays an important role, and depends crucially on the availability of developable sites at sufficiently

low fixed costs, as shaped by topography, existing development, and regulation. In complementary work,

Murphy (2018) structurally estimates a dynamic model of housing supply that predicts the timing and in-

tensity of single-family home construction on undeveloped lots as a function of the path of expected future

prices for housing services. Like in our analysis, his model accommodates cross-sectional variation in con-

struction costs to fit intensive and extensive margin price responses. We stress, however, that at least 30

percent of new unit and floorspace supply in the average tract come from endogenous teardown and reno-

vation responses to price shocks. These are forces not captured by standard housing production or supply

models, suggesting an important role for model-agnostic estimates that incorporate all margins of supply

response.

The central challenge in identifying housing supply elasticities is to find an exogenous source of vari-

ation that shifts neighborhood level housing demand but not local construction costs, land use regulations,

parcel size or land availability. To achieve identification, we use Bartik type labor demand shocks to com-

muting destinations from each residential location as the fundamental source of variation in housing demand

shocks, which feed through the commute time matrix to generate exogenous variation in home price growth

across residential locations. These labor demand shocks are built using 1990 industry shares in commuting

destinations interacted with national industry-specific employment growth rates after year 2000. We follow

Tsivanidis (2022) and nest our reduced-form estimation problem into an urban quantitative spatial equilib-

rium model in which residential demand in neighborhood i depends on “resident market access” (RMAi),

a coherent measure of access to employment from tract i. RMAi amounts to the commute time discounted

sum of employment in each commuting destination from location i, adjusted for labor supply competition

effects from other commuting origins. Labor demand shocks in each potential commuting destination are

used to generate a simulated counterpart to the change in RMAi that, conditional on appropriate controls,
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is purged of shocks to tract housing productivity or changes in other unobserved tract level housing supply

factors. Construction of this simulated instrument uses predicted employment and population growth in

locations beyond 2 km of tract i using 1990 tract employment shares by industry excluding construction

interacted with post-2000 national employment growth by industry. Structural estimation of this demand

model yields parameters of the neighborhood demand system.

We aggregate our neighborhood level housing supply elasticity estimates to the metro area level, ac-

counting for the fact that the aggregation scheme is specific to the nature of demand shocks and to the

degree of housing demand substitutability across neighborhoods. Aggregation of broad based neighborhood

level demand shocks delivers average metro area level supply elasticities that are considerably smaller than

those found in Saiz (2010). Allowing for a high amount of demand substitution across tracts implies an

average of region level unit elasticity of 0.41 with a standard deviation of 0.11 and a rank correlation of 0.49

with Saiz’ estimates. We show that our smaller elasticities come mostly because of the later and shorter

time period of study than Saiz’ 1970-2000 analysis. In addition, the nature of demand shocks used for

identification and aggregation may be important. As neighborhoods become stronger demand substitutes,

a shock affecting labor market opportunities in one location affects housing demand in a wider range of

areas, as households are more willing to substitute across residential options to take advantage of lower

housing prices in some places, thereby opening up more opportunities for supply elastic neighborhoods to

be included. However, we note that because of the limited flexibility of parameters to differ across metros,

we are somewhat less confident about levels of supply elasticities calculated using our estimates than their

within-metro dispersion.

As an example application, we use our supply elasticity estimates to explore the welfare consequences of

the Opportunity Zone (OZ) provisions of the 2017 “Tax Cuts and Jobs Act.” The OZ program targets about

one-quarter of low income census tracts with reduced capital gains taxes on new real estate investments.

The resulting lower cost of capital associated with new construction in these neighborhoods is reflected in

reduced marginal costs and outward (downward) shifts in neighborhood supply functions. The OZ program

may also spur improvements in local amenities, thereby boosting local residential demand. Our analysis

reveals that because OZ neighborhoods have among the lowest local supply elasticities in their metro areas,

welfare gains from the program are smaller than if the program were implemented in almost any other

neighborhood. In particular, we show that the potential gains in consumer surplus from implementing the

same tax incentive in non-OZ neighborhoods is greater by about $5 million per tract on average. Moreover,
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these OZ tract gains are overstated by 34% if calculated using regional rather than tract level supply elasticity

estimates. Gains in producer surplus from demand increases are also smaller in OZ tracts than they would

be for the same percentage demand growth in quantity terms for other types of locations.

Our empirical work delivers magnitudes of regional supply elasticity that are in line with other recent

evidence. Gorback and Keys (2020) uses variation in international capital flows to ethnic neighborhoods

to identify short run local unit supply elasticities that average 0.1 across the largest 100 US metro areas.

Cosman, Davidoff, and Williams (2018) confirm our evidence with the help of a calibrated dynamic theory

that housing supply elasticities are increasing in the availability of buildable land at each CBD distance.

Using identifying variation from foreign born residents and fertility rates across Swiss municipalities and

cantons, von Ehrlich, Schöni, and Büchler (2018) shows, like us, that housing supply elasticities depend

on geography and regulatory constraints. While estimated Swiss owner-occupied housing supply elastici-

ties are similar in magnitude to our evidence for the US, rental supply elasticities are considerably higher.

Finally, Orlando and Redfearn (2021) use a structural VAR to nonparameterically measure housing supply

elasticities in each county nationwide in the US. They find elasticities that are quantitively similar to those

discussed in this paper and declining over time. Some of this work uses housing units while other papers

use housing starts as supply measures. The housing production literature uses floorspace or latent hous-

ing services in new construction instead as supply measures. Our paper helps to unify these literatures by

systematically characterizing all margins of response of supply to price shocks in a unified way. In addi-

tion, we introduce an identification strategy that can be employed in many settings to structurally estimate

quantatitative spatial models.

2 Data

We compile information on housing and labor markets at the census tract level for all metropolitan areas in

the US. Using the Zillow (2017) Assessor and Real Estate Database (ZTRAX) data files, supplemented with

aggregate census and American Community Survey (ACS) data from 1990, 2000, 2010 and 2008-12, we

construct various housing price and quantity measures. We measure local labor demand conditions using

the place of work and journey to work tabulations in the 1990 and 2000 US Censuses of Population and the

2006 and 2010 LODES data. Finally, we use remote sensing information on land cover in 2001 to measure

baseline tract development intensity and topography and 2011 to construct changes in tract developed land.

All data are keyed to 2000 definition census tracts, covering 50,410 unique tracts and 63,897 observations
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across 306 metro areas (with some spatial overlap across metros). The use of census tract geography allows

us to conceptualize a data generating process with a uniform price per efficiency unit of housing services

within each location, while also having sufficient transactions information to be able to construct a price

index covering a large set of locations. Appendix A has further details.

2.1 Housing Quantities and Prices

We construct housing stock and flow measures to facilitate unified decompositions of tract residential

floorspace supply responses into components. The total residential floorspace in census tract i, Si, is the

amount of developed land Li times the average number of housing units per developed parcel Hi/Li times

the average floorspace per housing unit Si/Hi. We think of floorspace per land, Ai = Si/Li, as a key choice

variable for housing developers. Log differencing,

∆ ln Si = ∆ ln Li + ∆︸ ︷︷ ︸
∆ ln Hi

ln
Hi

Li
+ ∆ ln

Si

Hi︸ ︷︷ ︸
∆ ln Ai

. (1)

We further decompose changes in units and floorspace into those from new construction, teardowns and

renovations. For units, ∆ ln Hi =
HR

i
Hi

+
HU

i
Hi

+
HT

i
Hi

+
HE

i
Hi

, where HR
i refers to new units developed on already-

developed land (redevelopment), HU
i refers to new units developed on land that has not been developed

before (new development), HT
i refers to the combination of full depreciation and teardowns and is always

negative, and HE
i refers to the loss or the addition of units due to reconfiguration within existing buildings

(renovation). Correspondingly, we decompose changes in floorspace ∆ ln Si into SR
i

Si
+

SU
i

Si
+

ST
i

Si
+

SE
i

Si
. While

total new construction responses include both redevelopment and new development, we distinguish the

former from the latter as they may have different cost structures.

Annual tract level stocks and flows of units and floorspace are aggregated from ZTRAX assessment

files, which contain residential parcel level information. These are reported about every three years from

around 2000 until 2016, with improved geographic coverage over time. Data for missing years are filled in

using the reported year built.1 As a secondary source, we construct analogous measures using 2008-2012

ACS data on new construction flows (5% sample) in calendar years 2000-2009 and 100% count stocks of

occupied units from the 2000 and 2010 censuses.

1Some rental buildings only report total square footage and do not break out the number of units. In these cases, we impute the
number of rental units using the average square footage of units in other rental and condominium buildings of similar size in the
tract.
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To build census tract level price indexes, we use ZTRAX transactions information as transcribed from

local Recorders of Deeds. We only include arm’s length transactions for resale or new construction, ex-

cluding deed transfers such as bank foreclosures and quitclaim deeds. We include residential units of all

kinds but only consider individual buyer transactions, excluding those involving institutional buyers. We

also exclude homes that sell more than 9 times over our sample period. To fill out property attributes, we

merge in 2016 assessment data.

Using standard methods described in Appendix A, we construct repeat sales (RS) and hedonic (HI)

price indexes for each tract and year 2000 to 2010, excluding tract-year combinations with fewer than 10

sales. Sufficient transactions information only exists for about half of the tracts in our sample.2 To fill out a

measure of home prices for tracts with incomplete ZTRAX coverage and to facilitate a 1990-2000 pre-trends

analysis, we also build a lower quality hedonic price index using self-reported data from the 1990 and 2000

Censuses of Housing and the 2008-2012 ACS aggregated to the census tract level.

2.2 Satellite Data and Regulation

We construct topographic information using the “Scientific Investigations Map 3085”, derived from the

US Geological Survey’s National Elevation Database. This data set uses raster information on slope and

elevation range for all 30X30 meter land pixels within a 0.56 km radius (1 sq. km) of each pixel to classify

it into one of nine categories that describe how flat or hilly the surrounding area is. We focus on the fraction

of land area surrounded by “flat plains” as our main topographic measure. Flat plains are defined to have a

slope of less than 8% in more than half of these nearby pixels and an elevation range of less than 15 meters

in this 1 sq. km region.

We construct tract developed fraction from the National Land Cover Database (NLCDB) for 2001 and

2011. In addition to reporting other classes of land coverage, the NLCDB provides 4 categories of devel-

opment (0-19%, 20-49%, 50-79%, 80-100%) for each 30X30 meter cell nationwide. To impute average

developed fraction, we aggregate to tracts after assigning pixels to category midpoints. Because the histor-

ical assessment data for 2000 is incomplete, we use the NLCDB and ZTRAX geocodes to impute whether

each 2001-2010 new construction property is redevelopment. We consider a given pixel developed as of

2001 if it was coded as “high” or “medium” development intensity in the 2001 NLCDB land cover data.

We spatially aggregate tract data to construct various metro area level land unavailability measures. To

2Most dropped tract-years have zero transactions. As such, this count restriction drops only 8% of tract-year observations in
2000 and 14% in 2010, with a minor impact on results.
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be consistent with Saiz (2010), we calculate the fraction of area within 50 km of the CBD of each region

that is undevelopable due to steep slopes, water or wetlands. We also construct the fraction that is developed

as of 2001.3 To measure regulation, we use the the 2005 Wharton Residential Land Use Regulatory Index

(WRLURI), which is collected for a random sample of municipalities and aggregated to metro regions.

2.3 Population, Employment and Commutes

The Census Transportation Planning Package (CTPP) reports tabulations of 1990 and 2000 census data by

residential location, work location and commuting flow. The 1990 CTPP assigns microgeographic units

the size of census tracts or smaller to “regions”, which roughly correspond to metropolitan areas. These

partially overlapping regions form our study area.

For 2006 and 2010, we use the LEHD origin destination employment statistics (LODES) data to measure

employment by industry and place of work. As this data set does not have commute times, we maintain year

2000 commute times for these later years.

Census tract information for 1970-2010 from the Neighborhood Change Database is used to measure

aggregate outcomes and to control for pre-treatment trends in observables.

2.4 Summary Statistics

The estimation sample includes all tracts for which the 2000 Zillow unit stock is less than 25% below the

occupied housing stock reported in the 2000 census and for which RS index can be calculated in 2000 and

2010. To reduce noise associated with using small quantity bases, we exclude 206 tracts that have fewer

than 500 housing units in 2000. Because the CTPP and LODES fully cover our sample area, these data sets

do not introduce any additional sample constraints.

Summary statistics for housing quantities are presented at the top of Table 1. The average 2000-2010

growth rate for units (∆ ln Hi), which incorporates teardowns, is 7 percent based on Zillow and 8 percent

based on census data. Average construction rates of new units across tracts during the same sample period

( HR
i +HU

i
Hi

) are 10 percent based on Zillow data and 12 percent based on the Census/ACS data, with 80% of

this new construction occuring 2000-2006 in the average tract. An average 3 percent of the housing stock

was lost due to teardowns and depreciation. There was no average change in units from building renovations.

3Variants of these two measures for which we instead aggregate to the metro area level, from the CBD to within 50%, or from
the CBD to within 100% of the distance from the CBD to the furthest tract in each metro yield similar results.

8



The average 2000-2010 growth in floorspace (∆ ln Si) at the tract level is 14 percent. Out of this, the

floorspace added through new construction is about 13 percent. That is, new units are typically larger than

existing units. Renovation of existing units expands total floorspace by 3 percent on average. The loss of

floorspace due to teardowns and demolitions averages 2 percent.

The second block in Table 1 shows that average 2000-2006 repeat sales and hedonic price index growth

rates are similar at about 0.63. For 2000-2010, average growth rates are 0.25 for each, reflecting the 2007-

2008 housing market crash. The correlation between the two Zillow indexes is 0.92 for the 2000-2010 period

but those with the census index are only about 0.43 for both Zillow based indexes. Due to the slightly better

coverage of the RS index, we use this as our primary price measure throughout the analysis.

Figure 1 Panel A shows kernel densities of fraction flat and fraction developed. Both are bimodal.

Fraction flat has modes near the extremes of 0 and 1 while fraction developed is a smoother distribution

with modes near 0 and 0.4. Figure 1 Panel B shows that both decline on average with CBD distance, though

fraction developed declines more rapidly. Panel B also shows that both FAR and the Wharton Index fall

with CBD distance out to about 15% of the way to the urban fringe. As the Wharton Index is measured at

the municipality level, its decline within this range of CBD distance is fully due to between region variation

from increased representation of less dense central cities, which are typically less heavily regulated. The

Wharton Index rises steeply beyond that such that land use in municipalities 30% of the way to the urban

fringe is on average more heavily regulated than at CBDs. Beyond 30%, we have no FAR data and we do

not have sufficient Wharton Index coverage to precisely measure regulation.

3 Conceptual Framework

We are interested recovering estimates of γir in the reduced form expression below. Qs
ir denotes a measure

of housing quantity in tract i of metropolitan area r and Pir is the price per unit of housing services. Region

fixed effects θr capture region-specific factors that influence construction costs.

ln Qs
ir = θr + γir ln Pir + uir (2)

uir includes within-metro area supply shifters, both observed and unobserved. We allow γir to depend on

tract i’s observed heterogeneity, including initial building density, geographic features and distance to the

central business district in metropolitan area r. Because of the durability and immobility of housing, (2)
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is likely to hold with a greater γir for price growth than for price declines (Glaeser & Gyourko, 2005;

Goodman, 2005). For this reason, despite using price and quantity information for 2000-2010, we rely on

the 2000-2006 period for demand shocks. During this time, price growth was positive in 98 percent of the

tracts in our sample, more so than for any other period in our data.

In this section, we first sketch a simple model of neighborhood housing supply for new construction.

While stylized, the model delivers a natural decomposition of the residential floorspace supply elasticity into

intensive (floorspace per parcel) and extensive (parcel development) margins. It delivers a theoretical basis

for the floorspace and developed land supply elasticities we measure in the empirical work, provides rough

calibrated quantification of the intensive margin component, and microfounds our empirical specifications.

The drawback of this model is that its static formulation makes it easier to understand comparisons of new

development across neighborhoods in the cross-section, whereas the empirical work additionally compares

changes over time for identification reasons. This requires some adjustments, developed in Section 5.4.2, to

relate our empirical estimates to quantitative implications of the supply model.

We incorporate neighborhood housing supply functions into a spatial equilibrium model which links

neighborhood housing and labor markets in an urban area. This part of the model theoretically justifies the

instruments and helps guide the opportunity zone application in Section 7.

3.1 Housing Supply

We analyze an environment in which competitive developers with the same technology produce housing on

some land parcels in each neighborhood. As the model is static, it is most natural to view it as describing

comparisons of housing supply responses across different neighborhoods that are ex-ante identical but expe-

rience different exogenous increases in the price of housing services. The key object delivered by the model

that is relevant for the empirical work is a description of relationships between housing stocks and prices

across these ex-ante identical neighborhoods.

A representative developer only builds on land parcels with fixed development costs that are sufficiently

low such that the variable profit minus fixed development cost is weakly positive. Conditional on devel-

opment, the amount of floorspace supplied on each parcel in neighborhood i is Ai. Ai is chosen based on

tract housing productivity, parcel size and demand conditions summarized by the uniform price per unit of

housing services Pi.

Developers combine land and capital to produce housing services. Each building lot l in neighborhood
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i has a fixed lot size, faces the same continuous variable cost function Ci(Ai) and has the lot-specific fixed

development cost gil . The fixed lot size assumption reflects land assembly frictions that are likely to bind

over the 5-10 year time horizon that is the focus of our empirical analysis (Brooks & Lutz, 2016). The fixed

cost gil captures permitting and land preparation costs plus the potential opportunity cost associated with

exercising the real option to develop. Each tract has its own continuous distribution of fixed development

costs Fi(x).

The profit associated with building on parcel l in neighborhood i is

pro f itil = Pi Ai(Pi)− gil − Ci(Ai)− pil ,

where pil is the endogenous parcel acquisition price. Imposing 0 profits and perfect competition,

pil = Ci(Ai(Pi))(
d ln Ci(Ai(Pi))

d ln Ai
− 1)− gil .

This is the bid-rent function for lot l in neighborhood i. The first term reflects the intuition that more

development implies greater variable profits, which get capitalized into a higher parcel price. The second

term reflects capitalization of the fixed development cost into the parcel price. Henceforth, consistent with

Cobb-Douglas production, we assume that d ln C
d ln A − 1 = ϕ > 0. Normalizing the opportunity cost per unit

of land to 0, this means that the fraction of land developed in each tract is Fi[ϕCi(Ai(Pi))]. Differentiating

the developed land supply function yields

γland
i =

fi(ϕCi[Ai(Pi)])

Fi(ϕC[Ai(Pi)])

∆ ln Ai(Pi)

∆ ln Pi
ϕPi Ai(Pi). (3)

(3) reveals that tracts with a greater density of parcels available for development at the fixed cost that equals

marginal variable profit exhibit more elastic land supply. Details are in Appendix B.

Though the reduced form nature of the empirical work allows us to avoid imposing functional form

assumptions, to get a sense of magnitudes we parameterize with an example that delivers a convenient

form. Consistent with evidence in Combes et al. (2021), we use a Cobb-Douglas production technology

with land share α and a tract-specific housing productivity, resulting in the parcel level housing services

supply function Ai(Pi) = ρiP
1−α

α
i . We assume that fixed costs follow the Frechet distribution Fi(x) =

exp(−Γix−λ), with the common dispersion parameter λ > 1 and the tract-specific scale parameter Γi > 0.
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The resulting floorspace supply elasticity is

∆ ln Si

∆ ln Pi
=

1 − α

α︸ ︷︷ ︸
∆ ln Ai
∆ ln Pi

+ α−1−λλρ−λ
i P− λ

α
i Γi︸ ︷︷ ︸

∆ ln Li
∆ ln Pi

. (4)

The first term reflects developers’ responses in the quantity of housing services supplied per parcel.

With α estimated to be 0.2-0.33 in the literature, 1−α
α is between 2 and 4. The second term reflects the

extensive margin response, which is increasing in the scale parameter Γi and decreasing in the initial price

level Pi. Fixed cost distributions in tracts with a higher Γi have higher means and variances and hence

thicker right tails. This implies a higher density of land available for development at the marginal variable

profit and hence higher γland
i . We expect that tracts with lower initial development density, more flat land

and less stringent regulation have fixed cost distributions with higher scale parameters, Γi, and hence more

responsiveness along the extensive supply margin.4 In addition, a higher initial price in tract i implies a

thinner right tail of the fixed cost distribution and hence less land available for development at the marginal

fixed cost, which in turn causes the extensive margin to be less responsive.5 6

3.2 Housing Demand

We incorporate housing supply conditions that differ across locations within cities into a variant of the

quantitative urban model developed by Ahlfeldt, Redding, Sturm, and Wolf (2015). While tracing out

housing supply functions is ultimately about estimating reduced form impacts of housing demand shocks

on housing quantities and prices, this part of the theory is helpful in operationalizing this goal in three

ways. First, the model shows how to leverage variation across space within cities in local labor demand

shocks to isolate exogenous variation in housing demand shocks across census tracts. We show how housing

demand conditions in each census tract i can be summarized through “Resident Market Access” RMAi,

which is the sum of commute time discounted wages available to residents of tract i. This object can be

calculated using data on counts of workers and residents in each tract. Shocks to wages in commuting

destinations are reflected as shocks to RMAi. Second, the model makes clear the conditions required

4In the empirical work we recognize that Γi and ρi may additionally depend on unobserved tract characteristics. We also
recognize that these same attributes may be supply shifters.

5If Pi is too low or the minimum of the support of Fi(x) is too high, γ
space
i = γland

i = 0.
6The equilibrium split of (Ai ≡ Si/Li) into floorspace per unit (Si/Hi) and units per parcel (Hi/Li) depends on the composition

of housing demand (e.g. families vs. singles), which neither our data nor identification strategy is well suited to handle.
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for census tract level “Bartik” shocks to represent a valid source of empirical identification. Finally, the

model delivers enough structure to estimate parameters governing neighborhood demand conditions used to

perform welfare analysis of place based policies, as in Section 7. Detailed derivations and further discussion

of key model equations are in Appendix C.

3.2.1 Setup

While the main empirical work uses data for over 150 metros, our focus is on within-metro variation in

housing supply elasticities. As such, the model is of a single metro area.

A continuum of ex-ante identical workers indexed by ω choose residential tract i, work tract j and

industry of work k within the metro area. They receive productivity shocks zijkω over commute origin-

destination and industry triplets and preference shocks viω over residential locations. The preference shocks

are revealed first, leading agents to first choose residential locations and housing while anticipating the

quality of accessible employment opportunities before productivity shocks are revealed. Productivity shocks

are then revealed and agents choose work locations.

The indirect utility of living in tract i, commuting to tract j and working in industry k is

vijkω =
viωBizijkωwjk

P1−β
i eκτij

, (5)

where Bi is a local amenity, wjk is the price of a unit of skill in commuting destination j and industry k, Pi is

the price of one unit of housing services in i and κτij is the fraction of time spent commuting.

The productivity shock zijω is drawn from the Frechet distribution with shape parameter ε. Follow-

ing Tsivanidis (2022) and Couture et al. (2019), we incorporate a nested preference shock over residential

locations viω. This shock is also distributed Frechet but with shape parameters η and ψ, where η is the

elasticity of substitution in demand between neighborhoods in the same municipality and ψ is that between

neighborhoods in different municipalities.
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3.2.2 Resident Market Access

Solving the model backwards, conditional on living in residential location i, the probability that work loca-

tion j provides the highest utility is

πij|i =
∑k

[
wjke−κτij

]ε

∑k ∑j′
[
wj′ke−κτij′

]ε ≡ ∑k
[
wjke−κτij

]ε

RMAi
, (6)

where RMAi summarizes access to employment opportunities from residential neighborhood i.

Before the productivity shock is revealed, individuals evaluate the expected wages net of commuting

costs associated with residing in each tract. Solving for the expected maximum utility tract yields the

population supply function to tract i

πi = µ[ ∑
i´∈m(i)

(
Bi′P

β−1
i′ RMA

1
ε

i′

)η

]
ψ
η −1

(
BiP

β−1
i RMA

1
ε
i

)η

. (7)

This expression reflects the attractiveness of neighborhood i’s amenities and labor market opportunities as

balanced against its housing cost. This attractiveness is relative to the attractiveness to other neighborhoods

in tract i’s municipality m(i), captured by the object inside the summation. µ is an endogenous scalar that is

set either to ensure everybody has a place to live (in a closed city with a fixed population) or to summarize

the attractiveness of an outside option (in an open city).

Equilibrium commute flows follow a standard gravity equation in commute time τij.

ln πij = ln (πij|iπi) = ai + bj − (κε)τij (8)

That is, a regression of log commute probabilities between each origin-destination pair on origin and des-

tination fixed effects plus commute time τij recovers an estimate of the parameter bundle κε. We estimate

κε using separate flow-weighted commuting gravity regressions like (8) with origin and destination fixed

effects in 2000 for each metropolitan region.7

7Across the 306 regions in our broad sample, the median estimated elasticity of commuting flow with respect to one-way
commuting minutes in 2000 is -0.04, the minimum is -0.11 and the maximum is -0.01. Estimates of εκ are about half as large in
absolute value in big cities like New York and Los Angeles relative to small cities like Bryan-College Station, TX. This reflects the
fact that households in bigger cities are willing to travel longer to reach work destinations.

14



Recognizing that the labor supply to tract j is ∑i πij, we have

Lj = µ ∑
k

[
wε

jk

]
FMAj, (9)

where “Firm Market Access” FMAj is a measure of the access to workers enjoyed by firms in tract j.

Plugging into the definition of RMAi, in (6), delivers the following system of equations.

FMAj = ∑
i

e−κετij πi

RMAi
(10)

RMAi = ∑
j

e−κετij Lj

FMAj
(11)

Using data on employment Lj, residents πi, the parameter cluster κε and commute times τij, we calculate

FMAj and RMAi by solving this system in 2000, 2006 and 2010.

As individuals make housing consumption decisions before productivity shocks are revealed, residents

of tract i have expected housing demand (1 − β)
yi
Pi

, where yi is the expected income associated with living

in i. The resulting log aggregate residential floorspace demand in tract i is

ln Sd
i = ln ρHD +

1
ε

ln(RMAi) + ln πi − ln Pi. (12)

This object is increasing in RMAi conditional on population πi because greater RMAi is associated with

greater income for tract residents. Conditional on Pi, equilibrium tract residential population πi is also

increasing in RMAi, as seen in (7). Thus, shocks to RMAi result in housing demand shocks. This is the

key insight used for identification in the empirical work.

The reduced form empirical work uses the housing supply equation (2) in tandem with the housing

demand equation formed by substituting (7) into (12). Credible identifying variation in ln Pi must come

from a component of RMAi that is cleansed of variation in housing productivities and lot sizes. Section

4 lays out how we isolate such variation using a simulated version of RMAi based on Bartik type labor

demand shocks in commuting destinations for residents of tract i.

3.2.3 Equilibrium

Combining conditions governing population supply to residential tracts (7), labor supply to work tracts (9),

and imposing housing market clearing yields conditions describing equilibrium tract population and home
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prices. Differentiating the population condition yields

∆ ln πi =
γi + β

γi + 1 + η(1 − β)

η

ε
∆ ln RMAi + vπ

m + uπ
i . (13)

This equation incorporates an intuitive positive relationship between growth in employment opportunities

and tract population. This relationship is stronger if housing supply in tract i is more elastic and/or if there

is less dispersion in idiosyncratic preferences over locations (η is larger). In Section 7, we use (13) as a

basis for structural estimation of η and ψ, recognizing that identifying variation in ∆ ln RMAi must be

uncorrelated with tract level shocks to amenities and housing productivity for successful identification.

4 Empirical Implementation

Our main estimation equation amounts to the time-differenced counterpart to the simple tract level supply

equation (2).

∆ ln Qs
ir = θr + Xirδ + γir∆ ln Pir + ρ̃ir (14)

Observations are for tract i in metro region r. To allow for observed heterogeneity in supply elasticities, we

parameterize γir = Zirγ to depend on tract observables.8 As detailed in Section 2, the sources of observed

heterogeneity are topography, developed fraction, land use regulation and regulatory burden. Because we

do not observe some relevant factors that may differ by CBD distance, we also include CBD distance inter-

actions. As our empirical setting only allows us to recover relationships between observed tract attributes

and supply elasticities, interaction coefficients also likely incorporate influences of unobserved factors. For

example, if tract fraction developed is correlated with unobserved input costs, estimates of the coefficient

on the interaction between fraction developed and price growth would in part capture impacts of input cost

differences on supply elasticities. This means that while our estimates are well suited for characterizing tract

level housing supply elasticities for our study period, they are less appropriate for making causal predictions

about impacts of changing one observed attribute holding all else constant. Instead, our empirical imple-

mentation is primarily oriented toward ensuring that variation in price growth across tracts is uncorrelated

with unobserved supply shifters.

Fundamental to our empirical strategy is inclusion of metro region fixed effects θr, ensuring that we

8In Section 5.3, we extend the empirical model to allow for unobserved heterogeneity. This allows us to additionally incorporate
metro area level predictors of tract supply elasticities.
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compare different neighborhoods in the same labor market for identification. In tract characteristics Xir, our

main specification includes lagged demographic attributes, a cubic in CBD distance, 2001 tract developed

fraction and share flat land, and controls for tract-specific labor demand shocks. Our controls for 1990 and

2000 tract demographic characteristics account for potential influencers of the tract regulatory environment

that may be correlated with the instrument for price growth laid out below. CBD distance controls hold

constant any potential spatial trends in price growth that are related to costs and are useful given the stronger

2000-2010 labor demand growth in suburban areas. 1990 and 2000 census rent and price indexes help

to account for decadal mean reversion in home price growth. Controls for tract developed fraction and

topography account for obvious potential housing supply shocks and are needed as main effects in interacted

specifications. Finally, 1990 log tract employment and a 2000-2006 tract-specific Bartik labor demand shock

(explained below) help ensure that our IV implementation is only using variation from outside of tract ir for

identification.

Even including this long list of control variables, observed OLS relationships between post-2000 quan-

tity changes and contemporaneous price growth are implausibly small. Table A1 shows that OLS estimates

are at most 0.10 for housing units, 0.11 for floorspace, and 0.03 for land development.9 These small es-

timates point to several identification challenges in estimating housing supply. First, neighborhoods that

experience stronger housing demand shocks may follow with unobserved changes in housing regulation

in part in order to cope with these demand shocks, thereby maintaining open space and natural amenities.

That is, negative supply shocks may be correlated with positive demand shocks. Similarly, Davidoff (2016)

presents evidence that the magnitude of demand shocks may be correlated with supply elasticity, observ-

ing that more supply constrained metro areas tend to have greater productivity and housing demand growth.

Second, it is possible that positive productivity shocks outside of the construction sector may simultaneously

boost local housing demand through higher household earnings and reduce housing supply through higher

construction costs. This would further bias the OLS relationship between quantity and price growth down-

ward. Moreover, our price index measure, while constructed as carefully as possible, is sure to be a noisy

measure of the true price of housing services. Mechanical mean reversion in decadal house price growth

that could reflect classical measurement error would lead to attenuation bias. A valid identification strategy

must address the classic endogeneity concern of simultaneity in demand and supply by finding variation in

local housing demand shocks across neighborhoods that are uncorrelated with local construction costs.

9Ouazad and Ranciere (2019) find similarly small OLS relationships between price growth and quantity growth for the San
Francisco metro region.
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We develop an instrument that isolates variation in tract price growth that is plausibly uncorrelated with

supply factors conditional on controls. Consider the tract level inverse floorsapce demand equation from the

model. This equation is derived by substituting for tract population πi (7) in (12) and solving for price.

ln Pi = ρ̃HD +
1

1 + η(1 − β)

1 + η

ε
ln RMAi +

ψ/η − 1
1 + η(1 − β)

ln ∑
i´∈m(i)

(
Bi′P

β−1
i′ RMA

1
ε

i′

)η

− 1
1 + η(1 − β)

ln Sd
i +

η

1 + η(1 − β)
ln Bi (15)

The fact that the housing price in tract i is increasing in RMAi through impacts on housing demand is

intuitive. Labor demand conditions relevant to neighborhood i, as summarized in RMAi, represent a useful

source of variation in home prices. However, any component of RMAi that is correlated with tract housing

productivity or land parcel size is endogenous to housing supply. Indeed, through its codetermination with

FMAi, RMAi depends structurally on tract population, which itself depends on tract housing productivity

and parcel size. As such, our identification approach is to difference over time and pick out components of

∆ ln RMAi that are likely orthogonal to levels of and shocks to productivity or other factors that influence

local construction costs.

Because supply elasticity varies at the tract level, there exists structural heterogeneity in relationships

between price growth and ∆ ln RMAi. For example, housing demand shocks in tracts with more land

available for development may be expected to induce smaller price growth and greater quantity growth.

Formally, substituting for ln Sd
i in (15) with the generic housing supply function ln Si = ln ρi + γi ln Pi

yields the equilibrium relationship ∂ ln Pi
∂ ln RMAi

that is positive and with a negative cross derivative in the supply

elasticity (see the discussion after equation (34) in Appendix B). As a result, we also expect a heterogeneous

first stage relationship between housing price growth and our instrument providing exogenous varation in

∆ ln RMAi.

4.1 Instrument Construction

We use (10) and (11) as a basis for calculating a simulated version of ∆ ln RMAi, denoted ∆ ln ˜RMAi,

that excludes shocks to tract housing productivity and its correlates conditional on control variables. This

simulated instrument is both a reduced form housing demand shock that drives exogenous variation in tract

level house price growth and a predictor of the structural object ∆ ln RMAi that is unrelated to tract level

shocks to local amenities or housing productivities.
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Calculation of ∆ ln ˜RMAi is analogous to that of ∆ ln RMAi except that it replaces actual tract employ-

ment with that predicted by 1990 tract industry compositions interacted with national industry growth rates.

To solve jointly for ˜FMAj, we inflate the 1990 residential population of each tract by a constant to equalize

counterfactual aggregate labor supply and demand in each region. The simulated instrument ∆ ln ˜RMAi is

conceived in the spirit of shift-share identification strategies that go back to Bartik (1991).

Beyond fixing commute times to those from 1990, we incorporate three additional elements to reduce

the likelihood that the instrument is correlated with trends in construction costs conditional on controls.

First, we exclude construction from the set of industries used to build the instrument. This precludes the

possibility that nearby changes in productivity in the construction sector may directly affect construction

costs in tract i.10 Second, we exclude all tracts with centroids within 2 km of tract i. This exclusion

mitigates the possibility that employment growth in or nearby to tract i may influence the land available for

residential development in tract i or that its construction labor costs change in a way that is correlated with

the instrument. Finally, we always control for predicted employment growth in tract i itself.

Putting these elements together, and following (10) and (11), we calculate the year 2000 component

R̃MA
2000
i of our main instrument as:

R̃MA
2000
i = ∑

j⊆R(i)

e−(ε̂κ)r(i)τ
90
ij 1(disij > 2km) ∑

k ̸=cons
L90

jk [E
2000
r′(j)k/E1990

r′(j)k]

F̃MA
2000
j

(16)

F̃MA
2000
j = ∑

i⊆R(j)

e−(ε̂κ)r(i)τ
90
ij 1(disij > 2km)π90

i

[
∑

j⊆R(i)
∑

k ̸=cons
L90

jk [E
2000
r′(j)k/E1990

r′(j)k ]

∑
j⊆R(i)

L90
j

]
R̃MA

2000
i

(17)

In these expressions, τ90
ij is the reported or forecast commute time from i to j in the 1990 CTPP. (ε̂κ)r(i)

is estimated separately for each region r in year 2000, as explained in the context of (8). Distances from

residential to work locations disij are calculated using tract centroids. Employment in industry k and work

location j, L90
jk , is measured in the 1990 CTPP. E2000

r′(j)k and E1990
r′(j)k are 2000 and 1990 nationwide employment

in industry k excluding the region of tract j. That is, ∑
k ̸=cons

L90
jk [E

2000
r′(j)k/E1990

r′(j)k] captures the predicted amount

of employment that would exist in tract j if 1990 employment by industry grows at national rates (excluding

region r) to year 2000.
∑

j⊆R(i)
∑

k ̸=cons
L90

jk [E
2000
r′(j)k/E1990

r′(j)k ]

∑
j⊆R(i)

L90
j

is a constant within each region that captures the population

10Failing to exclude the construction industry or additionally excluding finance, insurance and real estate deliver very similar
estimates to our main ones, as seen by comparing results in Table 4 and Table A4.
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growth rate needed to match the aggregate employment predicted by Bartik shocks in the region in year

2000. The 2006 component of the instrument is calculated analogously, with E2000
r′(j)k in (16) and (17) replaced

by E2006
r′(j)k.

The log difference in R̃MAi for 2000-2006, ∆ ln R̃MAi, is our main instrument for ∆ ln Pi as measured

for both the 2000-2006 and 2000-2010 time periods. We build our instrument for the 2000-2006 period

only as this is the time period for which first stage predictive power is strongest. Variation in 2006-2010

employment changes are not well predicted by shift-share type instruments.11

4.2 Instrument Validity

The fundamental sources of identifying variation used are tract level “Bartik” (1991) type shocks in each

employment location, which can be written as follows.

Bartik j = ∑
k ̸=cons

L90
jk

∑k L90
jk
[ln E06

r′(j)k − ln E00
r′(j)k] (18)

A prerequisite for the spatial aggregation of such shocks into ∆ ln ˜RMAi to successfully predict ∆ ln RMAi

is for tract level counterparts to successfully predict tract employment growth.

Table 2 Panel A presents evidence to this effect. It presents regressions of 2000-2006 or 2000-2010

employment growth in tract j on Bartik j and controls for 1990 employment level, past demographic compo-

sition of tract residents, a cubic in CBD distance and metro region fixed effects. All tracts in primary sample

regions are included, as they all contribute to construction of R̃MAi in tracts that contribute data to our main

estimation exercises. We control for past employment to isolate employment growth due only to variation

in industry composition. Lagged demographics and CBD distance controls account for potentially differing

labor supply conditions. Results indicate that we can plausibly isolate labor demand shocks at the tract level.

Each additional percentage point increase in the Bartik shock predicts 0.33 points greater 2000-2006 tract

employment growth and 0.60 points greater 2000-2010 tract employment growth.12

One consideration we face when estimating the housing supply equation is accounting for serial corre-

lation in home prices and quantities. The first two columns of Table 2 Panel B show that home price growth

11Ferreira and Gyourko (2021) finds that income growth is coincident with the beginning of local housing booms but has little
predictive power for subsequent price dynamics.

12Results are robust to lagging the demographic tract controls by one additional decade and/or adding 2-2.5 km CBD distance
ring fixed effects interacted with metro region. Excluding demographic controls increases estimates to 0.69 and 1.04 in columns 1
and 2, respectively (Table A2, Panel A).
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is negatively serially correlated across decades whereas unit quantity growth is positively serially correlated

across decades.13 These results may reflect supply shocks that respond to demand shocks with a lag and

suggest that there could be local unobserved history that drives both relative price declines and more con-

struction. A legitimate potential concern is thus that ∆ ln ˜RMAi may be correlated with such unobserved

history. However, results presented in column (3) of Table 2 Panel B exhibit small and insignificant rela-

tionships between the instrument and pre-treatment trends in key endogenous variables. ∆ ln ˜RMAi is not

correlated with 1990-2000 housing price nor quantity growth for our main specification with region fixed

effects and 1990 and 2000 demographic controls. Table A2 Panel B column (3) shows that controls for

year 2000 demographics are needed to generate the insignificant (and negative) relationship between the in-

strument and 1990-2000 housing quantity growth; these controls also attenuate the 1990-2000 price growth

relationship, which remains statistically insignificant with and without demographic controls. Table 2 Panel

C presents results of the reverse regressions with the same implication.14 This pre-trend evidence indicates

that it is unlikely that our instrument is correlated with unobserved local history in a way that biases our

supply elasticity estimates.

4.3 First Stage Estimates

Table 3 presents the main first stage estimates. Results in Panel A show strong positive relationships between

our primary measures of ∆ ln P and ∆ ln R̃MA. The slightly smaller first stage coefficient for 2000-2010

relative to 2000-2006 reflects the fact that the 2007-2010 period mostly saw housing market declines. Col-

umn (3) shows that we do not have strong first-stage power predicting the census hedonic index. For this

reason, we only use the census index to account for pre-2000 price trends. Column (4) shows a signif-

icant estimated relationship between ∆ ln R̃MA and ∆ ln RMA for 2000-2010 of 0.74. According to the

model, this is the mechanism through which ∆ ln R̃MA predicts ∆ ln P. Tracts that appear in multiple metro

regions are weighted equally to tracts that appear in just one.15

Standard errors are adjusted for spatial autocorrelation out to 16 km using a triangular kernel. The 16

km cutoff was selected by inspecting the spatial correlogram of errors (Figure A2) generated from a tract

13Results in Table A2 Panel B shows that these correlations are not sensitive to conditioning on demographic controls.
14Goldsmith-Pinkham, Sorkin, and Swift (2020) suggest this sort of pre-trend test for evaluating the validity of Bartik instru-

ments. Their other suggested validity tests use base year industry shares, which are not easily defined in our setting as they are
nonlinearly aggregated across all potential commuting destinations into ∆ ln ˜RMAi.

15First stage predictions of our hedonic price index are similar to those reported in Table 3 Panel A columns (1)-(2) for the repeat
sales index. We also find significant positive reduced form relationships between the instrument and 2000-2006 and 2000-2010
Zillow new construction.
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level IV regression of the 2000-2010 growth rate in housing units on the 2000-2010 change in the repeat

sales price index using the specification reported later in Table 4 column (3). The associated first stage F

statistic is 22.2, which can be calculated from estimates in column (2) of the top row of Table 3.

We undertake a number of checks to confirm that our instrument is sufficiently strong. Olea and Pflueger

(2013) suggest that with dependent errors the critical F statistic for a strong first stage should be adjusted

upwards from the rule of thumb of 10 often used. In our context, the critical value of the F-statistic for the

“worst case bias” of 10% is 23.1. Lee, McCrary, Moreira, and Porter (2021) recommend that with a first

stage F-statistic of 22.2, second stage standard errors should be multiplied by less than 1.3. Multiplying

standard errors by this factor in Table 4 maintains statistically significant estimates in almost all cases. Con-

servative Anderson-Rubin test statistics associated with regressions in Table 4 using county level clustering,

which increases standard errors beyond our spatially corrected estimates in all cases, also reject that our

instrument is weak.

Table 3 Panel B reports extended first stage relationships between price growth and ∆ ln R̃MA interacted

with various factors that we demonstrate below influence supply elasticity. Inclusion of controls for CBD

distance, fraction developed and, fraction of flat land is crucial for identification, as doing so forces all

identifying variation to come from ∆ ln R̃MA rather than the interacted observable. For supply elasticities

to differ across tracts, it must be that we can predict different amounts of price growth for the same demand

shock hitting different types of locations. Therefore, we see it as important that exogenous price responses

induced by the instrument differ for tracts with different observable characteristics.

Interacted first stage coefficients are of expected signs and significance. Results in column (1) indicate

that tracts with a higher developed fraction experience larger price increases in response to a simulated

RMA shock. The insignificant coefficient on uninteracted ∆ ln R̃MA is as expected, as it applies to tracts

with no developed land. Such locations are expected to have very elastic supply where positive demand

shocks translate almost entirely into quantity rather than price responses. In other columns, estimates on the

diagonal are positive and strongly significant, as expected. Anderson-Rubin test statistics assuming standard

errors clustered at the county level (larger than the reported spatially corrected errors) yield evidence of

strong first stages.
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4.4 Sources of Identifying Variation

The unified supply elasticity estimates are identified by isolating comparisons between ex-ante observation-

ally identical tracts in the same metro area that receive different housing demand shocks because of variation

in labor demand shocks in commuting destinations. Labor demand shocks in accessible locations are spatial

aggregations of 1990 industry composition interacted with 2000-2006 industry growth. As changes over

time become small, within any region we can express the instrument in a way that is somewhat analogous

to the tract level Bartik shocks in equation (18), as follows.16

∆ ln R̃MAi ≈ ∑
k ̸=cons

[∑
j

e−ε̂κτ90
ij 1(disij > 2km)L90

jk [E
2000
r′(j)k/E1990

r′(j)k]

∑
k ̸=cons

∑j e−ε̂κτ90
ij 1(disij > 2km)L90

jk [E
2000
r′(j)k/E1990

r′(j)k]
]∆ ln Er′(j)k

If we treat the quotient as endogenous and the industry growth rates d ln Er′(j)k as exogenous, the instrument

does not require recentering for clean identification because the shares sum to one (Borusyak & Hull, 2020).

However, it may alternatively (or additionally) be reasonable to treat the shares as exogenous, as they are

predetermined. Our set of controls is oriented toward making these initial industry shares in commuting

destinations uncorrelated with unobserved supply factors in tract i conditional on controls. The lack of

pre-trends seen in Table 2 Panel C allays such potential concerns.

Of further interest is how average supply elasticities are built from aggregating impacts in tracts with

different baseline attributes. Consider comparisons between tracts that receive the same demand shock and

are ex-ante identical except in one supply factor, like initial land developed fraction. This type of comparison

only cleanly applies for the interacted specifications. The interacted first stage results in Table 3 Panel B

show how the same shock affects their prices differently. The tract with a low developed fraction sees prices

rise by less than that with the higher developed fraction. By contrast, inspection of the result in Table 5

shows that for a given demand shock driven price rise in those tracts with a greater developed fraction,

quantity rises by less.17

16We omit the multilateral resistance term, as ∆ ln R̃MAi has a correlation of 0.98 with the reduced form analog that leaves

F̃MA
Y
j out of the denominator.

17Identifying variation is not primarily from comparisons between neighboring or nearby tracts because such tracts typically
have very similar shocks and attributes. Since we allow for spatial autocorrelation in errors out to 16 km, adjacent tracts will be
treated almost as identical observations.
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5 Main Results

5.1 Unified Supply Elasticity Estimates

While evidence below confirms that supply elasticities are heterogeneous across neighborhoods, we begin

with unified estimates to provide a sense of magnitudes and of the relative importance of new construction

versus other margins of response to positive demand shocks. Table 4 reports coefficients in regressions of

various measures of housing quantity growth on home price growth. In all regressions, we instrument for

∆ ln P with ∆ ln R̃MA and control for region fixed effects and the same tract level factors as in Table 3

Panel A.

Following our discussion in Section 2.2, we decompose 2000-2010 changes in housing units (column

3) into that from new construction (column 4) and from changes to existing buildings (column 6). For

the former, we further distinguish between new construction on developed land (column 5) and that on

undeveloped land (column 4 minus column 5). We decompose the latter into expansion and renovation

of existing buildings (column 7) and teardowns (column 6 minus column 7). Similarly, we decompose

changes in floorspace of existing buildings (column 8) into additions through new construction (column

9) and changes through teardowns and renovations (column 10). We separate out renovations in existing

buildings (column 11) from fewer teardowns (column 10 minus column 11). We note that 2000-2010 supply

responses in columns (3) and (8) are considerably larger than those for 2000-2006 in columns (1)-(2), even

though both are identified using the same 2000-2006 labor demand shocks. Given the minimal number of

2007-2010 housing starts, these gaps mostly reflect construction lags after 2000-2006 price shocks.18

Table 4 column (3) shows that the estimated total unit supply elasticity during 2000-2010 is 0.35. That is,

between two ex-ante identical census tracts, if Tract A experiences home price growth that is 10 percentage

points higher than Tract B, changes in total housing units in Tract A would exceed that in Tract B by 3.5

percentage points. Estimates in columns (4) and (6) show that, out of these 3.5 points, 1.9 comes from new

construction and 1.6 comes from fewer teardowns and reconfiguration of existing buildings into multi-unit

buildings. Out of the portion due to new construction, only a small and statistically insignificant portion

is estimated to be redevelopment, as reported in column (5). This comes despite the fact that on average

36% of new construction in estimation sample tracts with some 2000-2010 new construction was through

18Table A3 provides additional checks. Panel A shows robustness to using the hedonic price index. Panel B columns (1)-(3) show
robustness of unit elasticities to using Census and ACS housing quantity measures. Column (5) shows robustness of the floorspace
elasticity to using the quantity index described in Appendix A.1.
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redevelopment. The portion due to teardowns and renovations is split about equally between these two

mechanisms.19

Column (8) shows the estimated total floorspace elasticity of 0.42. Of this, over two-thirds comes

from floorspace in newly constructed units (column 9); the remaining part comes from a combination of

fewer teardowns and expansions of existing buildings (Column 10). Over two-thirds of this last component

is through building renovation and expansion, accounting for a noisily estimated 21 percent of the total

floorspace elasticity (Column 11 divided by Column 8).

Column (12) reports a statistically insignificant estimated elasticity of observed developed land of 0.09.

In Section 5.4.3 we square this evidence with our supply model’s predictions about the magnitude of land

use intensification in response to price increases.

5.2 Tract Level Heterogeneity

The local average treatment effect tract-level supply estimates in Table 4 mask substantial variation across

neighborhoods. To begin to unpack this heterogeneity, Table 5 repeats the IV regressions in columns (3)-

(12) of Table 4 with the addition of a set of interactions between price growth and CBD distance, land

availability, and topographical features. These factors may influence construction costs either directly or as

proxies for land use regulations.20

Results in column (1) show that unit supply elasticity increases with CBD distance at a marginally

decreasing rate. At the CBD, the implied average supply elasticity is estimated to be only 0.11, rising to

0.59 near halfway to the region edge. As only 18 percent of observations fall beyond the halfway point,

the quadratic coefficient is mostly identified from variation near the CBD and predicted elasticities using

this specification are thus most accurate in that region. This positive CBD distance profile can be largely

explained by neighborhood-level factors that affect development costs. The model predicts that the extensive

margin of supply is more responsive in tracts where fixed cost distributions have fatter right tails. Such easier

development conditions are associated with sparser initial development, flatter land, and looser regulation.

Figure 1 Panel B shows that the average tract in our data is almost 60% developed at the CBD but less than

10% developed at the region edge. However, flat land declines from 45% to 38% from CBDs to region edges

and land use is more regulated at 30% of the way to region edges than at CBDs.

19Rosenthal (2018) and Brueckner and Rosenthal (2009) also provide evidence on the contributions of teardowns and renovations
to housing supply.

20CBD distance is measured as the fraction of the way from the CBD to the furthest census tract from the CBD in the same
metropolitan region.
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To quantify the importance of these factors, column (2) adds interactions between ∆ ln P and the 2001

fraction of land developed or the 2001 fraction of flat land in each tract.21 Consistent with the model,

we find that supply elasticity declines with developed fraction and increases with the fraction of flat land.

Moreover, CBD distance coefficients turn negative, reflecting the negative correlation between the fraction

of land developed and CBD distance seen in Figure 1.

As in Table 4, we decompose total unit supply responses in column (2) into components. Results in

columns (3)-(4) show the influences of tract-level factors on new construction elasticities, both for all new

development and redevelopment, are attenuated versions of those for total unit supply in column (2). At

CBDs, predicted supply elasticities using estimates in columns (2)-(3) and quantities in Figure 1 Panel B

show that the entire unit supply response to price growth is through fewer teardowns and renovations. Con-

ditional on developed fraction and topography, the new construction elasticity declines with CBD distance,

likely reflecting increasing regulation. However, the declining developed fraction in CBD distance out-

weighs this residual influence of CBD distance such that at 50 percent of the way to metro region edges, the

predicted overall unit supply elasticity is 0.40 while that for new construction rises to 0.23. Developed frac-

tion and topography affect the redevelopment supply elasticity in the same direction as the new construction

elasticity, consistent with model predictions. Comparisons of results in columns (4), (5) and (6) indicate that

positive demand shocks precipitate more teardowns and redevelopment in neighborhoods with flatter land,

possibly due to the fact that land assembly for demolition and rebuilding is easier in flatter areas (Dye &

McMillen, 2007).

Estimates in columns (7)-(10) for floorspace supply mostly mirror those for unit supply in columns (2)-

(6). In particular, developed land and CBD distance have negative effects on supply elasticities based on

total changes and new construction but have no effects on teardowns and renovation of existing floorspace.

Similar to units, we observe a larger loss of existing floorspace supply due to teardowns and full depreciation

in flatter areas. Finally, column (11) of Table 5 focuses on land development. These patterns are remarkably

consistent with those for the unit supply (column 2) and for the floorspace supply (column 7), though with

attenuated coefficients.22

The negative CBD distance coefficients in Table 5 likely reflect the impact of local regulations, as regu-

lations increase on average with CBD distance within metro regions over the range well covered by our data

21As the CBD distance squared interaction is no longer significant, we drop this variable. Neither fraction flat squared nor
fraction flat X fraction developed price interactions are significant, so we exclude these variables as well. Appendix Table A5
presents analogous parameter estimates for specifications that are quadratic in tract developed fraction.

22Estimates analogous to those in Table 5 using the Zillow hedonic price index instead are very similar (unreported).
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(Figure 1 Panel B). Columns (1)-(8) of Table A6 expand the quadratic specification in Table A5 to include

interactions of price changes with the Wharton Regulation Index (WRLURI), measured at the municipality

level, or tract level residential floor area ratio (FAR) building restrictions. As expected, estimated impacts of

regulation are if anything negative. Moreover, incorporating regulation moves coefficients on CBD distance

from significantly negative to insignificantly negative or positive, depending on the outcome. These results

corroborate the border discontinuity evidence in Shanks (2021) and Chiumenti, Kulka, and Sood (2022),

finding that greater municipal regulation increases lot sizes and prices of single-family homes. As the WR-

LURI is only observed for 40 percent of our primary sample observations and FAR is only observed for 6

cities, Table A6 estimates are not useful for predicting supply elasticities for most tracts.23

5.3 Introducing Unobserved Heterogeneity

To accommodate unobserved hetereogeneity across metro areas, we now extend the environment to a finite

mixture model (FMM) with two latent classes for coefficients on main and price-interaction supply factors in

the “second stage” equation of the IV model described above. That is, we recover class-specific coefficients

on price growth, developed fraction, fraction flat, CBD distance, and these three supply factors interacted

with price growth. Coefficients on all other controls and region fixed effects are constrained to be the

same across classes. To maintain statistical power, we also retain a single “first stage” equation. Because

estimation uses both generated and residualized regressors, we must bootstrap standard errors. We use a

spatial block bootstrap in which blocks are constructed as 8X8 km grid cells, with one centered on each

CBD. 24

Beyond adding additional parameter flexibility, the finite mixture formulation allows us to more closely

connect our analysis to existing metropolitan area level evidence on supply elasticities. To achieve this, we

allow the probability of being assigned to each latent class to depend on three metro area level attributes,

following Saiz (2010). These are the fraction of land that is developed within 50 km of the CBD, the frac-

tion of area that is lost to hills, water and wetland within the same radius, and the metropolitan area level

Wharton Regulation Index. Conceptually, these metro area level predictors may influence neighborhood

23We explore a number of plausible supply factors as additional price growth interactions. One of note is that supply elasticity
is larger in tracts that are bordering or crossed by a highway (Table A6). Better highway access may lower the cost of accessing
construction materials and workers or lead to less land use regulation.

24We also experimented with specifications which index more parameters by class and with three class models. Adding the
flexibility of indexing control variables and fixed effects by class increases standard errors and makes model convergence more
difficult. Adding a third class results in key interaction parameter estimates that are very similar across two of the three classes,
thereby providing little additional information about supply elasticities.
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supply elasticities through their impacts on initial prices and attributes of fixed development cost distribu-

tions that are common across tracts in a given metro area. We emphasize, however, that this is primarily a

predictive exercise. There may well be correlates of these three metro level factors that are the true drivers

of cross-metro variation in housing supply elasticities.25 26

Table 6 presents the finite mixture model estimates. Panel A presents logit coefficients predicting mem-

bership in latent class 2, which is the less elastic class. Panel B presents class-specific coefficients. We show

results for four key outcomes of interest.

Results in Panel A echo evidence from Saiz (2010) that metro area level factors matter for supply elas-

ticities. For all supply components investigated, greater metro developed fraction increases the probability

of being in the less elastic latent class. Conditional on initial development density, metros with a higher

fraction lost to hills, water and wetland also have a higher probability of belonging to the less elastic class

in total unit and floorspace supply elasticities, with insignificant positive estimates for new construction.

Metro-level regulation is associated with less elastic new construction supply for both units and floorspace.

However, total floorspace supply elasticities are positively related to regulation. This is evidence that build-

ing owners in more regulated areas are more likely to expand floorspace through renovation. Overall, results

in Panel A show that natural and policy constraints at the metro level are key determinants of neighborhood

supply elasticities.27

Results in Table 6 Panel B are fully consistent with their IV counterparts reported in Table 5. Class-

specific coefficients replicate the patterns in Table 5, though class 2 coefficients are muted. Across all

supply measures, we find that the estimated effects of tract-level factors on supply elasticities conditional

on being assigned to the more elastic class are 10-20 times larger than those conditional on being assigned

to class 2. Metros with environments that are not conducive to development have much more similar supply

elasticities across tracts than those with lots of developable land and low regulation.

The bottom three rows of Table 6 provide summary statistics about the in-sample class-specific elastici-

ties calculated with the finite mixture model estimates. The average unit supply elasticity is 0.56 conditional

25In the parameteric example from the model, the land development component of the supply elasticity is α−1−λλρ−λ
i P− λ

α

i Γi.
We imagine, for example, that the Frechet shape parameter on the fixed development cost distribution λ may differ by metro area.

26An alternative (or complementary) approach would be to more flexibly allow the intercept to depend on metro area level factors,
identifying off of metro area level variation in average price growth using Bartik type instruments. Unfortunately in our sample of
metros, first stage power is not sufficient for this procedure to deliver precise estimates.

27For robustness, we also evaluate using the same metro region supply factors calculated for regions within 10 km or 20 km of
CBDs, 10%, 50% or 100% of maximum distances from CBDs to metro edges, or for entire metropolitan areas. These all deliver
very similar results.
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on a tract being in the more elastic class and 0.21 conditional on a tract being in the less elastic class. Stan-

dard deviations of predicted supply elasticities are much greater in class 1 than class 2 for all outcomes.28

5.4 Predicted Supply Elasticities

Because the FMM-IV estimates in Table 6 accommodate richer heterogeneity, we focus our discussion

on predicted elasticities produced using these estimates. While the estimation sample is limited, we use

coefficient estimates to predict supply elasticities for all 63,896 census tracts in the 306 metro regions in

our data. We focus on supply responses for “units”, new construction units (“new units”), floorspace, and

floorspace in new construction units (“new floorspace”). Prediction standard errors are calculated using

a parametric bootstrap of 100 draws from the joint normal distribution of FMM-IV estimated parameters.

Recall that the new units and new floorspace supply responses we calculate are not technically elasticities,

but instead are calculated as d[QN
ir /Q2000

ir ]
d∆ ln Pir

, where QN
ir is the number of new units or amount of floorspace in

new units constructed in calendar years 2001-2010. d denotes cross-sectional differences and ∆ denotes

differences over time. Figure 2 shows kernel density graphs of these four measures and their lower and

upper 95% confidence bands. Average predicted units, new units, floorspace and new floorspace supply

elasticities are 0.29, 0.15, 0.51 and 0.19, respectively.

For comparison, we also make available predicted supply elasticities based on the FMM-IV model that is

quadratic in developed fraction and the simple IV linear and quadratic in developed fraction models. Figure

A3 depicts associated kernel densities. Compared with the FMM-IV estimates, distributions of tract IV

estimates typically have longer left tails. IV estimates disproportionately weight large metros, which tend to

have lower predicted elasticities given their more intensely developed land. As such, the FMM-IV estimates

are likely to apply more accurately in smaller metros. The quadratic estimates are somewhat wilder, as seen

in their greater dispersion across tracts. The linear estimates are better powered but do not do as well at

capturing nuanced differences between tracts.

Because our empirical setup is oriented toward exploiting within rather than between metro variation, we

emphasize that our predicted supply elasticities may not fully capture variation in average tract elasticities

between metros. For example, we identify the constant (uninteracted) impact of price changes on quantities

by comparing tracts in the same metro at the same CBD distance, developed fraction and topography with

different exogenous price growth. The FMM-IV estimates show very different constants for the two latent

28Table A7 presents analogous parameter estimates using specifications that are quadratic in tract developed fraction.
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classes and indicate that supply parameters are likely to be different across different types of metro areas.

Because of the necessarily limited flexibility of parameters to differ across metros, variation in levels of

supply elasticities calculated using our estimates are less well identified than their within-metro dispersion.

Nevertheless, in Section 6 we demonstrate that the FMM-IV estimates are considerably more informative

than the simple IV estimates about aggregate metro supply elasticities.

While we use empirical estimates to predict supply elasticities for each tract in our data, these elasticities

should be viewed as averages across tracts with similar observables. Tracts with the same CBD distance,

developed fraction and topography in the same metro are assigned the same predicted elasticity even if

they may be subject to different zoning restrictions. As a result, rather than being used to evaluate policies

affecting specific tracts, our predicted supply elasticity estimates are more suitable in policy evaluation for

a broad set of tracts, across which idiosyncratic differences in local regulation can average out.

Figure 3 shows how and why supply elasticities differ by CBD distance. Each panel shows local first-

degree polynomial smoothed plots of actual predicted supply elasticities and three counterfactual elasticities

holding certain tract attributes constant. Predicted supply elasticities (solid lines) are almost indistinguish-

able from supply elasticities that hold the fraction of flat land constant with CBD distance at metro means

(long dash-dot lines). Each supply elasticity increases with CBD distance, flattens in the suburbs, then

increases again toward the urban fringe. To understand this pattern, note our evidence from Figure 1 that de-

veloped fraction declines monotonically in CBD distance, yet land use regulation is higher in suburbs than

in central cities. These two forces offset to keep average supply elasticities constant in the suburbs from

approximately 30 to 90 percent of the way from CBDs to metro area edges, before the developed fraction

effect again dominates, pushing supply elasticities up at metro edges.29

The remaining two lines in each panel represent predicted supply elasticities when holding the initial

developed fraction at each metro region’s mean and when holding both developed fraction and topography

at the metro means. The two lines coincide, indicating that, on average, topography alone does not play a big

role in explaining the CBD distance pattern in local supply elasticities. Under both counterfactuals, we see

the supply elasticity falling over the full range of CBD distance for all quantity measures. Mechanically, this

is because of the negative CBD distance coefficients in Table 6, which likely capture increasing regulation

with CBD distance. Figure A4 shows predicted unit and floorspace supply elasticities by CBD distance

in six select metros. It indicates marked divergence of these two objects with CBD distance in each city,

29Plots using predictions from the specification that is quadratic in developed fraction instead look similar except for sharper
increases near the edge.
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reflecting the more floorspace intensive construction in suburban areas.

5.5 Relating Estimates to Model Predictions

Our parameterized supply model in Section 3.1 predicts that the elasticity of floorspace supply per parcel

for new construction is 1−α
α , where α is the land share in a Cobb-Douglas housing production function. The

literature estimates α to be at most 0.35 (Combes et al., 2021), which implies the elasticity of floorspace

per parcel in new construction should be at least 1.86.30 Predicted floorspace and unit elasticities reported

in Figure 2 do not map directly to the model, as they apply to changes in the total housing stock over time,

not just changes due to new construction. The “new units” and “new floorspace” plots in Figure 2 are not

elasticities but are built as components of total changes. As our focus is on calculating supply elasticities

from all sources, we do not have the most appropriate empirical setting to estimate elasticities that apply

to new construction flows only. These must come entirely from cross-sectional comparisons, whereas our

empirical strategy exploits relative changes across tracts for identification. As such, our goal here is only to

show that our estimates are roughly commensurate with evidence in the housing production literature.

To make such connections, we calibrate new construction elasticities using the new floorspace, new

units and land development predictions reported in Figures 2 and A3. We calculate d ln Sn
i

d ln Pi
as Si

Sn
i

̂d[Sn
i /Si ]

d∆ ln Pi
and

d ln Hn
i

d ln Pi
as Hi

Hn
i

̂d[Hn
i /Hi ]

d∆ ln Pi
, where n = N denotes new construction of all types and n = U denotes that on

undeveloped land only. Given evidence in Tables 4 and 5 that redevelopment supply elasticities are near 0,

we assume
̂d[SU

i /Si ]
d∆ ln Pi

=
̂d[SN

i /Si ]
d∆ ln Pi

and
̂d[HU

i /Hi ]
d∆ ln Pi

=
̂d[HN

i /Hi ]
d∆ ln Pi

for the purpose of these calculations. For land, we

can only measure d ln LU
i

d ln Pi
= Li

LU
i

̂d[LU
i /Li ]

d∆ ln Pi
. Adjustments use 2000-2010 flows and 2000 stocks. Identification

from comparison of ex-ante observationally identical tracts prior to experiencing demand shock variation

justifies equating d ln Pi with d∆ ln Pi and allows 2000 stocks to cancel.

As there is wide dispersion across tracts in the ratio of stocks to new construction or land development

flows, implied new construction elasticities vary quite sensitively across tracts. Nevertheless, our estimates

for the median tract are sensible and in line with housing production function estimates. Calculated using

the linear FMM-IV specification, medians of implied tract distributions of new construction floorspace and

units elasticities d ln SN
i

d ln Pi
and d ln HN

i
d ln Pi

are both 1.9. For new construction on undeveloped land ( d ln SU
i

d ln Pi
and

30Other estimates of the land share range from 0.10 for Centre County, PA (Yoshida, 2016) to 0.14 for Allegheny County, PA
(Epple, Gordon, & Sieg, 2010) to 1/3 for the average US housing market (ranging from 0.11 to 0.48 in low to high-value areas
(Albouy, Ehrlich, & Shin, 2018)). Ahlfeldt and McMillen (2014) provide empirical support for the Cobb-Douglas functional form
as a reasonable approximation to the housing production function.
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d ln HU
i

d ln Pi
), these estimates are 3.2 and 2.8, respectively, with a corresponding new land development elasticity

d ln LU
i

d ln Pi
of 0.2. Medians of the tract distributions of new construction floorspace and units on undeveloped

land relative to the new land development elasticity ( d ln SU
i

d ln Pi
− d ln LU

i
d ln Pi

and d ln HU
i

d ln Pi
− d ln LU

i
d ln Pi

) are 3.0 and 2.8.

Given Cobb-Douglas production, the floorspace estimate thus implies a land share in housing production of

0.26.

6 Aggregation

Much of the existing evidence on housing supply elasticities uses metro areas as the unit of analysis. To

connect to metro level estimates, in this section we explore the aggregation of tract based supply elasticities

to larger spatial units. As neighborhoods are linked in the residential demand system, metro level demand

shocks of the same size but aggregated from different combinations of changes in neighborhood fundamen-

tals can imply different aggregate housing supply elasticities. Because of this sensitivity to setting, here we

provide two examples of the macro supply elasticities implied from some simple broad-based shocks. Con-

text matters and neighborhood level supply elasticities must be aggregated as appropriate to the application

at hand.31

The tract elasticity for supply measure Q, γQ
ir , generically aggregates to the metro region level elasticity

γQ
r as follows.

∆ ln Qr = ∑
i

Qir

Qr
∆ ln Qir = ∑

i

Qir

Qr
γQ

ir ∆ ln Pir = γQ
r ∆ ln Pr

Solving out, by definition the region level elasticity is given by

γQ
r ≡ [∑

i

Qir

Qr
γQ

ir ∆ ln Pir]/[∑
i

Qir

Qr
∆ ln Pir]. (19)

In (19) we see that the metro level elasticity depends on the mix of neighborhoods experiencing price growth

that has been spurred by demand shocks. As neighborhoods are linked in spatial equilibrium, aggregation

requires imposing the form of demand linkages across neighborhoods.

We first consider the special case in which all neighborhoods simultaneously experience identical hous-

ing demand shocks.32 The resulting metro housing supply elasticity is a weighted average of tract-level

31While our narrative is about aggregation from census tract to metro region levels, the same logic can be applied to recover
elasticities for any aggregate spatial units.

32In the context of our model, a demand shock that changes aggregate expected income by the same percentage in every neigh-
borhood makes ∆ ln Sir +∆ ln Pir a constant. This would happen if the outside option ln µ in (7) changes, thereby leaving no scope
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elasticities, where the weight is the initial housing share adjusted for the neighborhood supply elasticity.33

Using ∆ ln Pir = x/(1 + γir) and (19) to aggregate over tracts, we have

∆ ln Qr

∆ ln Pr
= γ1

r = ∑
i

Hir
1+γir

∑
i

Hir
1+γir

γir. (20)

This expression reflects the fact that tracts with more elastic supply receives lower weight in aggregation

because price growth is lower in these locations for a given demand shock. We apply this same expression

to aggregate unit supply elasticities, recognizing that this requires tract per-unit price growth to match that

for floorspace.

As a second example, we consider the case in which aggregate housing demand shifts out in the city

but agents get redistributed across neighborhoods in a way that maintains the same relative home prices

across neighborhoods. This environment can be justified from the spatial equilibrium condition of a simpler

model than that in Section 3.2, as in Roback (1982), in which neighborhoods differ in amenities but get hit

with the same per-capita potential income shock, thereby driving the same price growth rate but different

tract population changes depending on their supply elasticities. In this setting, conditional on amenities

and wages net of commuting costs, neighborhoods are perfect substitutes. The resulting metro-level supply

elasticity is
∆ ln Qr

∆ ln Pr
= γ2

r = ∑
i

[
Hir

Hr
γir

]
. (21)

Figure 4 presents the distributions of γ1
r and γ2

r for units and floorspace. We report two versions of each,

derived from linear FMM-IV and linear IV empirical specifications. Vertical lines show that the FMM-

IV specification yields a mean unit supply elasticity across metro regions of 0.38 for γ1
r and 0.41 for γ2

r .

Analogous mean floorspace elasticities are 0.61 and 0.63, respectively. As it accommodates more demand

substitution across neighborhoods, γ2
r first order stochastically dominates γ1

r in all cases. Comparison with

Saiz (2010) elasticity estimates is in Appendix D.34

Patterns in Figure 4 highlight the advantages of using FMM-IV elasticities to capture cross-regional

differences in supply elasticities. Because IV elasticities are constrained to be the same for tracts with

the same observable supply factors in different regions, any cross-region differences must be driven by

for households to substitute across neighborhoods in response to this shock.
33To have complete coverage, we use housing units in the 2000 census for all weighting.
34Rather than using 2001 housing units as aggregation weights, it could also be reasonable to use tract land area. Doing so results

in larger aggregate elasticities, with FMM-IV means of γ1
r at 0.52 for units and 0.77 for floorspace.
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variation in the distribution of tract level supply factors. Moreover, as larger regions have more observations

and more opportunity to provide the within-region identifying variation needed for estimation, IV estimated

parameters are more heavily influenced by variation within larger regions and thus may not apply well to

smaller regions. The result is more reasonable FMM-IV region supply elasticity estimates. For example,

only Newark (γ1
r = −0.04 and γ2

r = −0.02) has negative FMM-IV unit elasticity estimates, whereas

5 regions have (more strongly negative) IV based estimates. Moreover, the fact that floorspace FMM-IV

elasticities are typically greater than those for units is in line with model prediction.

Comparing the distributions of the metro-level elasticities in Figure 4 with those of the tract-level elas-

ticities in Figure 2 reveals comparable or larger dispersion within than between regions. Both distributions

of FMM-IV unit elasticities in Figure 4 have a standard deviation of 0.11 while that for both distributions

of floorspace elasticity is 0.13. Analogous numbers for the full tract distributions in Figure 2 are 0.20 and

0.26. Mechanical variance decompositions of the distributions in Figure 2 reveals that 30% of the variation

in tract unit elasticities and 24% of tract floorspace elasticities are from cross-region variation. As such, use

of metro-level supply elasticities is inadequate for evaluating economic consequences of neighborhood-level

shocks.

7 Opportunity Zone Application

Tract level supply elasticities are essential to carry out welfare analysis of neighborhood targeted place based

policies. In this section, we work through an example focusing on the census tracts designated for economic

development as Opportunity Zones (OZ) under the auspices of the US federal “Tax Cuts and Jobs Act” of

2017.

7.1 Recovering the Neighborhood Demand System

Using the structure of our demand model, we estimate parameters governing demand substitution patterns

across neighborhoods. Appendix C derives the floorspace demand elasticity

∆ ln Sd
i

∆ ln Pi
= [η(β − 1)− 1] + si[

ψ

η
− 1], (22)

where si is the share of municipality m(i)’s population that is in tract i. The second term captures net

migration with other municipalities. The implied elasticity of substitution between two neighborhoods in
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the same municipality is 1 + η(1 − β) and that between neighborhoods in different municipalities 1 +

η(1 − β) + (1 − ψ
η )(si + si′), where we expect ψ < η. The corresponding population and units elasticities

of substitution are η(1 − β) and η(1 − β) + (1 − ψ
η )(si + si′), respectively.

Taking FMM-IV estimates of γ
space
ir , gravity regression estimates of (κε)r, and calibrated values of

0.8 for β and 0.01 for κ as given,35 we estimate using GMM, imposing that ∆ ln ˜RMAi is orthognal to

the error term in (13). One specification includes metro-region fixed effects and a second conditions on 5

municipalities in each region: one for the central city and one each for suburbs to the north, south, east and

wester. We use the same estimation sample and tract weights as in Tables 4-6.

As identifying variation comes through labor demand shocks that lead to housing demand (rather than

supply) shocks, recovery of neighborhood demand parameter estimates leans heavily on model structure. In

particular, the model delivers how much neighborhood housing prices must change given exogenous shocks

to RMAi holding population constant. Then, observations about population changes are informative about

η and ψ because these parameters govern own and cross-price demand elasticities across neighborhoods.

With municipality fixed effects, the estimate of η is 8.5 (se = 1.2). Without municipality fixed effects,

we estimate ηR to be 3.9 (se = 0.2). This smaller estimate reflects less substitutability between neigh-

borhoods in different municipalities than between neighborhoods in the same municipality. The resulting

implied average elasticity of demand for floorspace in each neighborhood is −0.2 ∗ 3.9 − 1 = −1.8 while

that for units is −0.8. These estimates are similar to estimates in Hanushek and Quigley (1980) and Couture

et al. (2019).

7.2 Opportunity Zones

The OZ program was created to incentivize investment in economically distressed communities. Among

other incentives, the program provides preferential tax treatment of capital gains for new real estate invest-

ments within the census tracts designated by state governors to be in an OZ. Governors could designate 25%

of eligible census tracts in their states for OZ status. Eligible tracts are those in “low income communities”

(LICs), which have an individual poverty rate of at least 20 percent and a median family income that is at

most 80 percent of the area median, plus adjacent tracts that are sufficiently low income.

The OZ program may boost both the supply and demand for housing in OZ tracts. The reduction in the

capital gains tax liability for investors reduces the financing costs of real estate development in these areas,

35κ = 0.01 implies that 2 minutes of commuting reduces full income by 1%. Attempts to estimate κ jointly with neighborhood
demand parameters yields implied values of ε that were too low.

35



which we model as a reduction in the marginal cost of building housing by ∆s log points relative to other

tracts. OZ status may additionally spur local governments to invest in tract amenities, which we treat as

an outward shift in housing demand by ∆d log points in terms of quantities. As the OZ program applies

to 3,957 urban census tracts in our sample area, we see this treatment as broad based enough such that our

calculated impacts of the program can reasonably apply to an average OZ tract.

Following the model in Section 3, we assume that the demand and supply for floorspace and housing

units have constant elasticity forms. Generically, these equations are:

ln Qd
i = di + εDi ln Pi

ln Qs
i = siεSi + εSi ln Pi

Shocks of ∆d to demand (in terms of d ln Qd) and ∆s to supply (in terms of d ln Ps) yield the equilibrium

price change ∆ ln Pi = ∆di−εSi∆si
εSi−εDi

. Dollar changes in CS and PS for small supply and demand shocks

respectively are:

∆CSi = −∆Pi Hi −
1
2

∆Pi∆Hi

∆PSi = ∆Pi Hi +
1
2

∆Pi∆Hi.

Associated percentage changes in CS and PS are ∆di + (1 + εDi)∆ ln Pi and εSi∆si + (1 + εSi)∆ ln Pi.

We measure base year prices using the 2016 repeat sales index and base year quantities of units and

floorspace in each tract using Zillow data from 2016. All values are in 2010 dollars. We use predicted linear

FMM-IV tract supply elasticities based on results in Table 6 and tract developed fraction from 2011. To get

a sense of the importance of local heterogeneity, we compare results using predicted tract supply elasticities

to those using region supply elasticities γ2
r . Under these assumptions, we calculate changes in CS and PS

for all census tracts for which we have repeat sales price index information in 2016, given either ∆s = 0.05

or ∆d = 0.05. Assuming a capital gain of 25% on an average property and savings of the 20 percent capital

gains tax via the OZ program, ∆s = 0.05 seems reasonable.36

Table 7 presents the results. Results in Panel A show that our assumed supply shock would increase

CS in the market for housing units by an estimated $3.3 million on average in OZ tracts, $3.7 million in

other low income tracts, $6.7 million in adjacent tracts, and $8.3 million in fully ineligible tracts. Imposing

36Long-term capital gains are taxed at either 0, 15, or 20 percent depending on the taxpayer’s income.
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metro level supply elasticities instead would imply much greater CS changes of $4.4 million in OZ tracts

and smaller changes of $7.0 million in fully ineligible tracts, with smaller standard deviations for all types

of locations. Increases in PS for 5% demand shocks are greater in magnitude than their CS counterparts, as

housing demand is more elastic than housing supply. But, as with CS, PS increases the least on average in

OZ locations at $18.7 million, far below the $28.5 million average increase in fully ineligible tracts. Results

for the floorspace market in Panel B exhibit similar patterns, though with smaller magnitudes due to the

larger demand and supply elasticities for floorspace than units.

Our OZ analysis concludes that because of relatively inelastic housing supply in OZ tracts, capital

gains tax reductions impart lower average welfare gains than if the same policy were implemented in other

neighborhoods. In addition, using metro level rather than tract supply elasticities would deliver misleading

conclusions about the welfare consequences of the program.37

8 Conclusions

Since DiPasquale (1999)’s lament about the limited amount of research on housing supply, large and distinct

literatures on housing production and housing supply have developed. Evidence from the former finds

support for a near Cobb-Douglas form of the production function in land and capital for newly constructed

housing conditional on land development. Evidence from the latter shows that land use regulation and

topographic conditions influence housing supply elasticities at the metro area level. This supply literature

emphasizes how selection of land parcels into development influences overall supply elasticities.

This paper performs a comprehensive analysis of housing supply for the US. We decompose total

floorspace supply responses to price shocks into eight margins. This aspect of the analysis includes separate

consideration of land development, new construction, redevelopment, teardowns, renovation, and floorspace

per unit. While the new construction component of our analysis conforms quantitatively with evidence in the

housing production literature, we demonstrate that new construction accounts for at most two-thirds of the

supply response to price shocks in the average neighborhood. Because of housing’s durability and variation

in land development costs across locations, an understanding of the production function for housing is not

sufficient to have a full picture of housing supply. Land availability matters, even at the neighborhood level.

37Other evidence on the efficacy of the OZ program is mixed. Comparing OZ to similar looking non-OZ tracts, Chen, Glaeser,
and Wessel (2022) finds that the OZ program had little effect on home price growth, though Kennedy and Wheeler (2022) finds
effects on levels. Arefeva, Davis, Ghent, and Park (2020) finds that the OZ program promoted job creation in OZ relative to non-OZ
tracts. However, Freedman, Khanna, and Neumark (2021) finds that OZ status had little effect on resident outcomes.
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Maintenance and renovation margins matter as well, as they can reduce teardowns, thereby keeping vintage

properties in the housing stock longer.

We recover variation in neighborhood housing supply elasticities as functions of both neighborhood and

metro area topographic conditions, development intensity, and regulation. Using our FMM-IV estimates,

average predicted elasticities of floorspace and housing unit supply with respect to price are 0.51 and 0.29

across 50,410 census tracts in 306 US metropolitan areas for the 2000-2010 period, with just over half

of the unit supply response in the typical tract due to new construction. We find that each component

of housing supply becomes more elastic moving out from urban centers and that there is more variation

within than between metro areas in housing supply elasticities. This pattern is in part but not entirely

due to the increasing fraction of land available for development with CBD distance. Initial development

intensity, availability of flat land and zoning regimes are all important determinants of local housing supply.

Identification comes from variation in labor demand shocks to commuting destinations, as aggregated using

insights from a quantitative spatial equilibrium model.

We hope this new evidence on housing supply informs housing affordability policies and aids in assess-

ing the welfare consequences of place based policies more generally. On affordability, our results indicate

that intensive margin supply responses are important components of supply. Building renovations that add

units and reduced teardown rates together account for about 40% of unit supply responses to price growth.

As these segments of supply are more likely to serve lower income households and are less sensitive to land

availability constraints, policies that make them easier are likely to contribute to improved affordability, par-

ticularly in neighborhoods with low new construction supply elasticities because of limited land availability.

On place based policies, the Opportunity Zone example shows the implicit costs of targeting inelastic sup-

ply neighborhoods with subsidies for housing construction. Our evidence of high within metro variation

in housing supply elasticities indicates the importance of considering neighborhood supply conditions in

evaluations of the efficacy of neighborhood targeted policies.

Code for replicating the tables and figures in this article can be found in Baum-Snow and Han (2023).
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Table 1: Summary Statistics
Mean St Dev Obs Tracts

Tract Housing Quantity Changes, Estimation Sample
Stock of Housing Units, Census, 2000-2010 0.08 0.22 30,840 24,532

New Units, Census/ACS, 2000-2009 0.12 0.20 30,829 24,521
Stock of Housing Units, Zillow, 2000-2010 0.07 0.19 30,840 24,532

New Units, Zillow, 2000-2006 0.08 0.15 30,840 24,532
New Units, Zillow, 2000-2010 0.10 0.18 30,840 24,532

New Units on Developed Land, 2000-2010 0.03 0.06 30,840 24,532
Teardown+Renov. Units, Zillow, 2000-2010 -0.03 0.10 30,836 24,528

Renov. Units, Zillow, 2000-2010 -0.00 0.06 30,380 24,095
Floorspace, Zillow, 2000-2010 0.14 0.26 30,384 24,099

New Floorspace, Zillow, 2000-2010 0.13 0.22 30,395 24,110
Teardown/Renovation Flrspc, Zillow, 2000-2010 0.01 0.16 30,379 24,094

Renovation Flrspc, Zillow, 2000-2010 0.03 0.13 30,380 24,095
Developed Land, 2001-2011 0.08 0.12 30,840 24,532
Tract Home Price Changes, Estimation Sample
Repeat Sales Index, 2000-2006 0.64 0.35 30,502 24,233
Hedonic Index, 2000-2006 0.62 0.34 29,274 23,239
Repeat Sales Index, 2000-2010 0.25 0.38 30,840 24,532
Hedonic Index, 2000-2010 0.25 0.35 29,424 23,378
Census Index, 2000-2010 0.54 0.28 30,694 24,417
Tract Level Supply Influencers, Estimation Sample
Fraction of Land Area Developed, 2001 0.33 0.21 30,840 24,532
Fraction of Land Area Flat 0.41 0.43 30,840 24,532
Wharton Real Estate Index (municipality level variation) 0.28 1.02 12,367 10,016
Residential Floor Area Ratio (8 cities) 1.76 1.50 2,128 1,714
Fraction of Way from CBD to Metro Edge 0.27 0.21 30,840 24,532
Tract Employment and Population Variables
Tract Employment, 2000-2010, Regions in Est. Sample -0.19 0.87 56,043 42,755
Tract Level Bartik Instrument, 2000-2006, Regions in Est. Sample 0.08 0.05 56,274 42,902
RMA, 2000-2010, Estimation Sample 0.04 0.05 30,840 24,532
Simulated RMA, 2000-2006, Estimation Sample 0.04 0.01 30,840 24,532
All changes are in percentage terms. The full study region includes the 50,410 unique census tracts in the 306 partially overlapping
metro regions with 1990 information on tract employment. The estimation sample includes 24,532 equally weighted unique tracts in 169
regions with at least 10 housing market transactions in 2000 and 2010 in the ZTRAX data. It excludes tracts for which the 2000 ZTRAX
housing unit counts are more than 25% below the 2000 census count or tracts with fewer than 500 ZTRAX housing units in 2000. 2.6%
of estimation sample tracts experienced zero growth in developed land and 6.1% experienced zero new construction.
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Table 2: Tract Level Employment and Housing Market Dynamics
Panel A: Tract Level Regressions of Employment Growth on Bartik Shocks

(1) (2)
Change in Log Employment

2000-2006 2000-2010
Tract Bartik Shock, 2000-2006 0.33*** 0.60***

(0.10) (0.10)
No 1990 Emp. Info. 0.13 0.27

(0.24) (0.23)
Observations 51,900 56,043
R-squared 0.06 0.05
Number of Regions 158 169
Panel B: Tract-Level Housing Market Dynamics

(1) (2) (3)
∆ln House Price, 00-10 ∆ln House Quantity, 00-10 ∆ln Simulated RMA, 2000-2006

∆ln House Price, 1990-2000 -0.25*** 0.01 0.0000
(0.01) (0.01) (0.0001)

∆ln House Quantity, 1990-2000 -0.02 0.24*** -0.0002
(0.03) (0.04) (0.0002)

Panel C: Analysis of Pre-Treatment Trends, 1990-2000
(1) (2)

∆ln House Price, 90-00 ∆ln House Quantity, 90-00
∆ ln Simulated RMA, 2000-2006 0.26 -0.31

(0.52) (0.23)
Panel A: Regressions also include metro region fixed effects, fraction developed in 2001, fraction of tract land that is flat, a cubic in fraction of the way to region edge,

log 1990 tract employment and the following tract attributes from 1990 and 2000: census home price index, rent index, log population, log average household income,

share black, share white, share college. Sample includes all tracts in metro regions that are in the primary sample. Each tract receives equal weight. Robust standard

errors.

Panel B: Each entry is from a separate regression of the variable at top on the variable at left with the indicated fixed effects. Regressions include metro region fixed

effects, a cubic in fraction of the way from the CBD to the metro edge, fraction of tract land that is flat, log 1990 tract employment, the 2000-2006 Bartik shock for the

tract and the following tract attributes measured in 1990 and 2000: log population, log average household income, share black, share white and share college.

Panel C: Each coefficient is from a separate reduced form regression of the variable listed at top on the change in ln Simulated RMA between 2000 and 2006 and region

fixed effects. Controls are the same as in Panel A with the addition of a tract 2000-2006 Bartik shock. Standard errors are corrected for spatial autocorrelation up to 16

km.
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Table 3: First Stage Results for Baseline Specifications
(1) (2) (3) (4)

Panel A: Unified Specification
Repeat Sales Index Census Index RMA

2000-2006 2000-2010 2000-2010 2000-2010
∆ ln Simulated RMA, 2000-2006 5.94*** 5.18*** 0.29 0.74***

(1.26) (1.10) (0.96) (0.17)
Observations 30,500 30,838 30,692 30,838
R-squared 0.14 0.23 0.08 0.04
Number of Fixed Effects 166 167 167 167
Panel B: Interacted Specification

∆lnP ∆lnP x (CBD Dis) ∆lnP x %Dev ∆lnP x %Flat
∆ln Simulated RMA -2.04 -3.56*** -4.82*** -6.42***

(1.76) (0.90) (1.28) (1.78)
∆ln Simulated RMA x (CBD Dis) 2.92 11.12*** 0.55 5.12**

(2.34) (1.73) (1.23) (2.17)
∆ln Simulated RMA x %Dev 19.44*** 2.93** 20.01*** 8.67***

(4.13) (1.34) (3.44) (2.81)
∆ln Simulated RMA x %Flat -0.06 0.48 0.64 13.01***

(1.58) (0.60) (1.04) (3.32)
Observations 30,838 30,838 30,838 30,838
R-squared 0.24 0.38 0.28 0.25
Number of Fixed Effects 167 167 167 167
Regressions include metro region fixed effects and the same controls as in Table 2 Panel C. Tracts are equally weighted, even if they

appear in multiple metro regions. Standard errors are corrected for spatial autocorrelation up to 16 km using a Bartlett kernel. ∆ ln P in

Panel B refers to the 2000-2010 repeat sales index. Analogous estimates using the hedonic price index instead are very similar.
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Table 4: Unified IV Results for Housing Supply
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Total Total Total Total Total
Subsets New Remain. New Remain.

Redev. Expan. Expan.
Units Floorspace Units Floorspace Land

Period 2000-2006 2000-2010 2000-2010 2001-2011
∆ ln P 0.24*** 0.26** 0.35*** 0.19** 0.03 0.16** 0.08 0.42*** 0.29** 0.13 0.09 0.09

(0.09) (0.10) (0.12) (0.08) (0.03) (0.08) (0.06) (0.16) (0.12) (0.11) (0.09) (0.06)
Obs 30,500 30,048 30,838 30,838 30,838 30,834 30,377 30,381 30,392 30,376 30,377 30,838
Regressions include the same controls as those in in Table 2 Panel C. The estimation sample uses data from 167 metro regions. The sample is reduced 1 region for

the floorspace outcomes due to missing floorspace information for some tracts. Entries in Columns 1 and 2 use 164-166 regions. All outcomes are measured using the

ZTRAX data except developed land, which uses USGS land cover information. Standard errors are corrected for spatial autocorrelation to 16 km. First stage F-statistics

can be determined from results in Table 3.
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Table 5: Linear IV Model: Heterogeneity in Supply Elasticities by CBD Distance and Tract Condition

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Total Total Total

Subset of Total New Remain. New Remain.

Subset of New/Remain. Redev. Expan. Expan.

Units Units Units Units Units Units Floorspace Floorspace Floorspace Floorspace Land

∆lnP 0.11 0.94*** 0.62*** 0.07 0.33** 0.16 0.91*** 0.70*** 0.15 0.13 0.30**

(0.12) (0.25) (0.20) (0.05) (0.14) (0.10) (0.31) (0.26) (0.20) (0.17) (0.13)

∆lnP x (CBD Dis) 1.89** -0.58** -0.43** -0.13** -0.17* -0.08 -0.46* -0.50** 0.12 0.11 -0.29**

(0.73) (0.24) (0.21) (0.05) (0.10) (0.08) (0.27) (0.25) (0.15) (0.12) (0.12)

∆lnP x %Dev -1.54*** -1.33*** -0.13 -0.23 -0.15 -1.39*** -1.32*** 0.08 -0.06 -0.61***

(0.40) (0.36) (0.09) (0.15) (0.11) (0.45) (0.40) (0.23) (0.18) (0.21)

∆lnP x %Flat 0.30** 0.37*** 0.08** -0.09** -0.01 0.35** 0.46*** -0.15** -0.07* 0.19***

(0.12) (0.12) (0.03) (0.05) (0.03) (0.14) (0.15) (0.07) (0.04) (0.07)

∆lnP x (CBD Dis)2 -1.84**

(0.78)

Observations 30,838 30,838 30,838 30,838 30,834 30,377 30,381 30,392 30,376 30,377 30,838

Kleib-Paap F-Stat 17.49 11.01 11.01 11.01 11.01 10.18 10.22 10.13 10.17 10.18 11.01

Regressions are the same specification as in Table 2 Panel C with the addition of indicated interaction terms. The repeat sales price index measure is used throughout. SE adjusted for spatial autocorr.

to 16 km. If included where omitted, coefficients on ∆lnP x (CBD Dis)2 would be insignificant.
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Table 6: Linear Finite Mixture IV Model Housing Supply Interacted Regressions
Outcome Units New Units Floorspace New Floorspace

Panel A: Logit Parameters for Membership in Class 2 (More Inelastic Supply)
(1) (2) (3) (4)

Fraction Developed within 50km of the CBD 5.34*** 4.36*** 4.37*** 3.86***
(0.61) (0.64) (0.60) (0.59)

Fraction of land within 50km of the CBD Unavail 0.52* 0.29 1.11*** 0.40
(0.29) (0.26) (0.31) (0.27)

Metro Wharton Index 0.03 0.12** -0.68*** 0.10**
(0.06) (0.06) (0.09) (0.05)

Constant 0.60*** 1.10*** 0.79*** 1.20***
(0.12) (0.11) (0.14) (0.11)

Panel B: Second Stage Estimates
(1) (2) (3) (4) (5) (6) (7) (8)

Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2
∆lnP 1.79** 0.29** 1.88** 0.08 2.12** 0.57*** 1.43 0.13

(0.71) (0.14) (0.81) (0.07) (1.07) (0.22) (1.21) (0.09)
∆lnP x (CBD Dis) -1.14** 0.03 -1.14** 0.12** -1.70** 0.15 -0.90 0.10

(0.52) (0.11) (0.54) (0.06) (0.69) (0.21) (0.66) (0.08)
∆lnP x %Dev -3.35*** -0.30* -4.14*** -0.19** -3.09*** -0.71*** -3.09** -0.21*

(0.95) (0.17) (1.14) (0.09) (1.19) (0.26) (1.46) (0.12)
∆lnP x %Flat 0.47* 0.03 0.78** 0.06 0.75** 0.09 1.03*** 0.08

(0.27) (0.05) (0.32) (0.04) (0.34) (0.08) (0.39) (0.05)
Mean Class Probability 0.22 0.78 0.16 0.84 0.24 0.76 0.15 0.85
Mean implied γ 0.56 0.21 0.52 0.08 0.94 0.41 0.59 0.11
SD implied γ 0.59 0.06 0.74 0.06 0.56 0.16 0.59 0.06
Notes: Sample sizes are the same as in Table 5. Standard errors are bootstrapped with spatially clustered sampling with replacement. Clusters are defined as 8 by 8 km
grid squares with one grid square centered at each metro region’s CBD.
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Table 7: Welfare Consequences of the OZ Program (millions of 2016)
Opportunity Zone Yes No, LIC No, Adjacent No, Other
Sample Size 2,580 8,776 3,704 15,939

Panel A: Market for Housing Units
Tract Supply Elasticity 0.20 0.22 0.31 0.32

(0.17) (0.17) (0.19) (0.17)
Based on Tract Supply Elasticities
CS (∆s = 0.5, ∆d = 0) 3.28 3.74 6.69 8.28

(4.63) (4.66) (7.41) (8.68)
PS (∆s = 0, ∆d = 0.5) 18.65 19.46 23.71 28.47

(16.76) (16.31) (19.46) (25.76)
Region Supply Elasticity 0.28 0.28 0.29 0.25

(0.12) (0.11) (0.12) (0.11)
Based on Region Supply Elasticities
CS (∆s = 0.5, ∆d = 0) 4.39 4.67 6.61 7.00

(3.95) (4.14) (6.26) (6.71)
PS (∆s = 0, ∆d = 0.5) 17.30 18.33 23.81 30.03

(15.82) (15.36) (19.37) (26.86)
Panel B: Market for Floorspace

Tract Supply Elasticity 0.40 0.43 0.53 0.56
(0.25) (0.24) (0.24) (0.23)

Based on Tract Supply Elasticities
CS (∆s = 0.5, ∆d = 0) 3.19 3.54 5.76 7.14

(3.77) (3.80) (5.88) (6.99)
PS (∆s = 0, ∆d = 0.5) 8.35 8.77 11.06 13.30

(7.43) (7.24) (8.97) (11.74)
Region Supply Elasticity 0.51 0.51 0.52 0.47

(0.15) (0.15) (0.15) (0.14)
Based on Region Supply Elasticities
CS (∆s = 0.5, ∆d = 0) 3.90 4.14 5.70 6.28

(3.37) (3.55) (5.20) (5.70)
PS (∆s = 0, ∆d = 0.5) 7.96 8.45 11.09 13.76

(7.12) (6.92) (8.93) (12.06)
Tract means with standard deviations in parentheses. Entries are calculated using assumptions

about demand and supply shocks indicated in the leftmost column. Estimates use a floorspace

demand elasticity of -1.8 and a units demand elasticity of -0.8. In the floorspace market, indicated

increases amount to 0.7 percent for OZs and LICs and 0.9 percent in other types of locations. PS

increases by 3.2 percent in OZs and LICs and 3.3 percent in other locations. These percentages

are undefined in the market for housing units because inelastic demand makes CS infinite.
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Online Appendices

A Data Appendix

A.1 Housing Quantities

We begin with the parcel level ZTRAX current and historical assessment files. These data sets have one

observation per tax parcel in each local tax jurisdiction’s assessment year starting around 2000 and ending

around 2016, with increasing geographic coverage over time. For each parcel, we construct floorspace and

the number of housing units in each assessment year. As the data comes at the tax lot level, the number

of units in a property are not directly observed for rental properties. Condominiums are typically reported

as separate observations and thus can be assigned as one unit each. For rental properties, we impute the

number of units based on the description of the property. Duplexes, triplexes and quadruplexes are assigned

2, 3, and 4 units respectively. Medium and large apartment buildings are assigned at least 5 units. If the

building has more than 4 floors, they are assigned the number of floors in the building. Floorspace is directly

reported, though it is missing for 9% of parcels in 2000 and 8% of parcels in 2010.

After stacking these files into one unbalanced panel of parcels, we first fill in any missing information

on floorspace and units from prior and then later years within property. We then assign the property to the

location (geocode and 2000 census tract) reported in the current assessment file, as this is most accurate. We

fill out the data set to construct stocks and flows at the parcel-year level in a balanced panel. As the ZTRAX

assessment files begin after 2000 in many areas, we must use the information on built year to impute stocks

and flows for the first few years starting in 2000 in many areas. While the built year variable has near

universal coverage, we impute a built year of prior to 2000 if this variable is missing. We aggregate to the

2000-definition census tract-year level to produce an interim data set that can be aggregated to generate 2000

and 2010 stocks and 2000-2010 flows of housing units and floorspace at the tract level.

Changes in units due to teardowns and depreciation plus renovations are measured as a residual. They

are the 2000 stock plus 2000-2010 new construction less the 2010 stock. Renovations are measured as the

change in the number of units in buildings that exist in our data in both 2000 and 2010. Renovations can

increase or decrease the housing stock (e.g. by converting an unfinished basement into a separate unit or by

converting two duplex units into a single family home).

For robustness on our floorspace measure, we explore the use of a broader housing quantity index with
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full coverage. To build this, we regress the log of sales price on age, age-squared, square footage and square

footage squared all interacted with property type (single family, townhouse, condo, co-op, prefab, small

multifamily, medium/large multifamily) using 2006 data, the first year with broad coverage. This regression

only includes observations with non-imputed values for each variable. We then fill in missing floorspace

observations across all years. To do this, we impute to the average log floorspace of other properties in

the following order, depending on data availability: tract-type-year, tract-type, county-type-year, county-

type. Using the fixed coefficients from 2006, we predict out the log quantity of housing services provided

using property attributes in the assessment data in each year. We then exponentiate, sum up within each

tract, and take the log to yield the quantity index. This measure generates estimates that are very close to

our floorspace based estimates (Table A3). To avoid econometric difficulties associated with a predicted

dependent variable and for transparency, the main analysis uses floorspace as the efficiency units measure.

A.2 Housing Prices

A well-known challenge for constructing home price indexes is that homes are heterogeneous in observed

and unobserved attributes. The goal is to hold quality constant, eliminating all price variation due to dif-

ferences in attributes. Leveraging the richness of assessment data on home characteristics, we use census

tract-region-year fixed effects aHI
irt from the following hedonic regression to build our Hedonic Index (HI).

ln Phirtm = aHI
irt + ρHI

m + XhirtmβHI + eHI
hirtm

Here, h indexes homes in census tract i, region r, year t and month m. Xhirtm includes a rich set of char-

acteristics, including quadratics in property age and log square feet plus factorization of Zillow’s coding of

property condition, quality and style of construction, total rooms, bathrooms, bedrooms, stories, roof type,

heating type, number of fireplaces, wall construction, and water pipe type. (Missing values are treated as

distinct factors.) Month of sale fixed effects ρHI
m flexibly account for seasonality in market conditions.

To fill out a measure of home prices for tracts with incomplete ZTRAX coverage and to facilitate a

1990-2000 pre-trends analysis, we also build a lower quality hedonic price index using self-reported data

from the 1990 and 2000 Censuses of Housing and the 2008-2012 ACS aggregated to the census tract level.

These are tract residuals aC
irt from the following cross-sectional regressions estimated separately for 1990,

2000 and 2010:

ln PC
irt = XC

irtβ
C
t + aC

irt.
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PC
irt is the average self-reported value of owner-occupied homes in the tract. Included in XC

irt are fractions

of the tract’s owner-occupied units in various building types, with various numbers of bedrooms, and of

various vintages. While it is of lower quality, this index covers all residential census tracts in the US.

To account for unobserved heterogeneity in quality across homes, we also use the ZTRAX data set to

build a repeat sales index (RS) at the tract-year level. For this index, we exclude any sales fewer than 180

days after the prior sale. Inclusion of home fixed effects αRS
hir in the following regression purges individual

home heterogeneity that is fixed over time. Tract-year fixed effects aRS
irt from this regression form our repeat

sales index:

ln Phirtm = aRS
irt + ρRS

m + αRS
hir + eRS

hirtm.

After homes are renovated, we treat them as new homes for the purpose of constructing this index. We

recognize that this index may suffer from a less representative sample than the hedonic index and incorporate

unwanted capitalization of unobserved home improvements.

We also consider the tract level Federal Housing Financing Agency (FHFA) repeat sales price index. The

FHFA index only covers single family house transactions involving conforming and conventional mortgages.

For this reason, we focus on Zillow-based measures as they have more complete geographic coverage and

include condominium sales. The correlation between the 2000-2010 growth rates of the two repeat sales

indices is 0.70.

A.3 Redevelopment

Here we explain in more detail how we construct our measure of housing redevelopment. 5% of the 12.8

million 2001-2010 new construction properties in our data were on high intensity pixels and 14% were

on medium intensity pixels. We treat these properties as redevelopment. A remaining 29% were on open

space or low intensity developed pixels. The rest were on pixels coded as barren land, forest, shrubs/scrub,

herbaceous, pasture, agriculture or wetlands. This imputation procedure is not perfect since small portions

of 30X30 meter cells coded as medium or high intensity developed are still likely to be available for new

development. However, among 2001-2010 new construction properties we note that only 0.5% of those on

medium developed parcels in 2001 were coded as highly developed in 2011, with upward transition rates

more than 14 times higher for other 2001 land use classifications. In our estimation sample, an average 36%

of new construction units are built as redevelopment, with this distribution heavily skewed and bi-modal.
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The median is 0.24, the modes are near 0 and 1, and the aggregate fraction redevelopment is 0.22.

Our approach for measuring redevelopment is consistent with previous findings that in cities where

building density is already high, builders can only increase housing supply through redevelopment. At the

peak, the number of demolitions and teardowns in the Chicago metropolitan area approached 40% of sales

in 2005 (McMillen & O’Sullivan, 2013). In New York City, annual teardown activity increased almost

eight-fold from 1994 to 2004 and peaked in 2005 (Been, Ellen, & Gedal, 2009).

A.4 Regulation

The Wharton Residential Land Use Regulatory Index (WRLURI) is constructed from a battery of survey

questions sent to a weighted random sample of municipalities nationwide in the US in year 2005. Our

data includes 2,373 municipalities and 30,526 tracts with WRLURI information, though only 10,016 tracts

covering 12,361 observations in 144 regions of our estimation sample are covered. This tract level data is

used for regressions in Table A6.

Our FMM-IV analysis uses a version of the WRLURI that is aggregated to metro regions. The aggregate

index is expressed in population-weighted standard deviation units. 12 of the 169 regions in our estimation

sample and 43 of the 306 metro regions in our data have no municipalities surveyed. Municipalities of

CBDs sampled in 164 metro regions. The regions without surveyed municipalities were assigned an index

of 0, which is in the middle of the distribution. We aggregate to metro areas using nationally representative

weights rather than metropolitan weights, as some of our sample area was not considered metropolitan in the

original WRLURI data collection. This choice allows us to maintain full coverage in our FMM-IV model

estimation and out of sample prediction.

Our primary sample includes tracts from 169 metro regions. However, only 159 central cities are rep-

resented in the estimation sample. Of these 159 municipalities, we observe the WRLURI for 87. For the

remaining metros in our estimation sample, we are constrained to use only data from suburban municipalities

to create metro level WRLURI aggregates.

We also incorporate separately collected information on Floor Area Ratio (FAR) restrictions on resi-

dential development from the municipalities of Atlanta, Boston, Chicago, Denver, Los Angeles, New York,

San Francisco, and Washington. For each residential land parcel, local zoning maps provide the residential

FAR. We use the average of these within each census tract, weighted by parcel area. Most of these data were

generously provided by Ruchi Singh (Brueckner & Singh, 2020).
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A.5 CTPP and Study Area

Each commuting region in the 1990 Census Transportation Planning Package (CTPP) uses either traffic

analysis zones, block groups or tracts as its unit of geography. Traffic analysis zones are typically smaller

than block groups. Commuting flows and times are reported for pairs of census tracts, traffic analysis zones

or block groups within each region only. Employment by place of work and 18 industry groups are reported

for these same geographic units. For Connecticut and New Jersey, which are fully contained in one large

1990 CTPP region each, we develop new regions that each have a 25 km radius around each CBD in each

state. We assign each 2000 definition census tract to at least one 1990 CTPP region using reported allocation

factors from 1990 to 2000 definition census blocks. The 1990 CTPP reports allocation factors from traffic

analysis zones to 1990 definition census blocks. We use land area allocation weights.

1990 CTPP regions can overlap. This means that one 2000 definition census tract can be assigned to

more than one region. In these cases, the same tract appears as multiple observations in our data. Because

price index and market access measures are calculated to be region-specific, these are not identical observa-

tions. However, each unique census tract is weighted equally in our statistical analysis. For example, if a

tract is assigned to two regions, each observation for this tract gets a weight of 0.5 in all estimation.

The 2000 CTPP has the same information as the 1990 CTPP but with fewer industries and more sup-

pression of commuting flows.

For most regions, central business district (CBD) locations are taken as the centroid of the set of census

tracts reported as being in the CBD in the 1982 Economic Census. Remaining CBD assignment is done by

eyeballing a location that is near city hall and the most historical bank branches in the region’s largest city.

Empirical implementation requires information on the commute time between each pair of census tracts

in each region. Because they are based on only a sample, and flows of fewer than 5 sampled workers are

suppressed, commutes are not observed between about one-half of tract pairs in 1990 and two-thirds of

tract pairs in 2000. To fill in the rest, we impute origin-destination commute times using out of sample

predictions from a regression of log travel time on region fixed effects, log travel distance, log CBD distance

to workplace and log CBD distance to residence.

A.6 Alternate Geographies

For robustness analyses, we construct a parallel data set comprising spatial units of 10-19 tracts each. To

construct this data set, we begin by splitting all metro regions into 4 sub-regions: the central municipality,
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municipalities of 1-10 tracts, municipalities of 10-19 tracts, and municipalities of >19 tracts. (Tracts in

unincorporated areas are assigned to be in the same municipality.) We partition each sub-region into tract

groups as follows. For central municipalities, we define the inner 15 tracts closest to the CBD as the first tract

group. Define r as the radius to the furthest tract centroid of these tracts. Between the following radii, we

split into equal sized tract groups of about 15 by going around the CBD in order of tract angle: (r,3r) (3r,6r)

(6r,10r) (10r,15r), etc. We assign municipalities with <10 tracts collectively to an inner CBD distance band

or an outer band, with about half of the tracts being in each. Then we go around the CBD assigning to tract

groups, constraining all tracts in each municipality to be in the same group, with a target of 15 tracts per

group. Medium size municipalities are assigned to their own tract groups. Large municipalities are split

into contiguous groups of 10-19 tracts, with a target of 15 tracts per group. The resulting data set has 4,542

observations, with a median of 15 tracts in each group and a maximum of 19. Using this new geography,

we rebuild the entire data set. We could build complete data for 2,439 tract groups using the same sample

criteria as for the tract level data set, 2,403 of which can be used for estimation.

Rerunning the estimation for this aggregated geography yields first stage results that are in line with

those in Table 3 but with less agreement across quantity measures and with larger standard errors. Given

this discrepancy with the tract level measures, we elected not to move forward with this more aggregate

geography. Conceptually, using spatial units at levels of aggregation above units that are perfect demand

substitutes can generate estimates that are difficult to interpret. Any IV estimator employed on aggregate

units will essentially use opaque housing demand shocks that are very unlikely to be hitting all spatial

sub-units of large aggregate units equally. Moreover, these sub-units may have different underlying supply

elasticities that are all being mixed together.

B Housing Supply Model

This appendix fills in many of the details from the model presented in Section 3.1.

B.1 Setup

The competitive developer’s profit consists of revenue net of the fixed development cost for plot il, the

variable cost and the land aquisition cost, respectively.

πil = Pi Ai − gil − Ci(Ai)− pil
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The developer is subject to marginal cost pricing Pi =
dCi(Ai)

dAi
and chooses the optimal amount of floorspace

A∗
i = Ai(Pi) accordingly. Fixed lot size and Cobb-Douglas housing production in land and capital would

imply d ln Ci(Ai)
d ln A > 1. The 0 profit condition requires that the bid for each plot of undeveloped land is, after

substituting dCi(Ai)
dAi

for Pi:

pil = Ci(Ai)(
d ln Ci(A∗

i )

d ln Ai
− 1)− gil .

This is the bid rent function for plot of land il. Henceforth, assume that d ln Ci(Ai)
d ln Ai

− 1 = ϕ > 0. This is

consistent with Cobb-Douglas production, as described below.

Each tract has a distribution of the fixed costs of development Fi(x), with this distribution depending on

some tract-specific parameter. Normalizing the opportunity cost per unit of land of 0, this means that the

fraction of land developed in each tract is Fi[ϕCi(A∗
i )].

B.2 Tract Housing Services Supply

The amount of developed land in tract i is MiFi(ϕCi(A∗
i )), where Mi is the number of plots of land in tract

i. The implied tract aggregate housing services (floorspace) supply function Si(Pi) is [housing services per

parcel]x[number of parcels of land]x[fraction of plots developed]. Taking logs, we have

ln Si(Pi) = ln Ai(Pi) + ln Mi + ln Fi(ϕCi[Ai(Pi)]).

Differentiating, the supply elasticity decomposes as

d ln Si

d ln Pi
=

d ln Ai(Pi)

d ln Pi
+

fi(ϕCi[A∗
i ])

Fi(ϕC[A∗
i ])

ϕMC(A∗
i )Pi

dAi(Pi)

dPi

=
d ln Ai(Pi)

d ln Pi
+

fi(ϕCi[A∗
i ])

Fi(ϕC[A∗
i ])

d ln Ai(Pi)

d ln Pi
ϕPi A∗

i

This expression reflects intensive and extensive margin responses respectively.

B.3 Parameterization with Cobb-Douglas Production

The production function is Ai = κi M
α
i K1−α

i , where Mi is the exogenous parcel size and Ki is the only

variable factor. Going through profit maximization, as above, yields the following factor demand, where ι is
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the cost of capital. As is standard in the literature, we assume that ι does not vary by location.

K∗
i = (

1 − α

ι
)

1
α κ

1
α
i P

1
α

i Mi

Floorspace per parcel is

A∗
i = (

1 − α

ι
)

1−α
α Miκ

1
α
i P

1−α
α

i

and variable cost is

Ci = ι

[
Ai

κi M
α
i

] 1
1−α

= (1 − α)
1
α ι1−

1
α κ

1
α
i P

1
α

i Mi.

From these objects, note that d ln Ai
d ln Pi

= 1−α
α , MC(Ai) = dCi

dAi
= ι

1−α

[
1

κi Mi
α

] 1
1−α A

α
1−α

i , and the devel-

oper’s revenue from one parcel is Mi(
1−α

ι )
1−α

α κ
1
α
i P

1
α

i . As a result, Revenuei
Variable Costi

= 1
1−α and ϕ = α

1−α .

Plugging in, the resulting elasticity expression is

d ln Si

d ln Pi
=

1 − α

α
+

fi[α(
1−α

ι )
1−α

α Miκ
1
α
i P

1
α

i ]

Fi[α(
1−α

ι )
1−α

α Miκ
1
α
i P

1
α

i ]
(

1 − α

ι
)

1−α
α Miκ

1
α
i P

1
α

i .

B.4 Parameterization with a Frechet fixed Cost Distribution

We consider Frechet fixed cost distributions with the common dispersion parameter λ and tract-specific

scale parameter Γi. We express the CDF as Fi(x) = exp[−Γix−λ] and the associated PDF as fi(x) =

λΓix−1−λ exp[−Γix−λ]. Therefore, fi(x)
Fi(x) = λΓix−1−λ.

Plugging into the expression above, the overall supply elasticity is

d ln Si

d ln Pi
=

[
d ln A(Pi)

d ln P
+

λΓi

(ϕCi)1+λ

d ln A(Pi)

d ln Pi
ϕPi A∗

i

]
.

Under Cobb-Douglas production,

d ln Si

d ln Pi
=

1 − α

α
+ α−1−λ(

1 − α

ι
)−λ 1−α

α λM−λ
i κ

− λ
α

i P− λ
α

i Γi.

Defining ρi = ( 1−α
ι )

1−α
α Miκ

1
α
i , the extensive margin component can be written as α−1−λλρ−λ

i P− λ
α

i Γi.
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B.5 Land Redevelopment

To see how the model can incorporate redevelopment, consider an environment in which f L
i (x) is the density

of fixed development costs across all parcels in tract i as if they had no prior development and r is an

additional fixed redevelopment cost.

The fixed cost distribution for redevelopment, f R
i (x), is the left tail of the f L

i (x) distribution up to ϕCi

but shifted by r to reflect the additional redevelopment cost rescaled to integrate to 1. With fraction MR
i

Mi

of parcels up to fixed cost gi previously developed, the new density of redevelopment fixed costs can thus

be written as f R
i (z) =

f L
i (z−r))
MR

i /Mi
1(z ≤ gi + r), where MR

i /Mi = FL
i (ϕCi). The fixed cost distribution

for developing previously undeveloped land f U
i (x) is the right tail of f L

i (x) at fixed costs above ϕCi only

rescaled to integrate to 1. The new density of fixed costs of developing undeveloped land is f U
i (z) =

f L
i (z)

MU
i /M 1(z ≥ gi). This is the right tail of the f L

i (x) distribution. Supports of both distributions include the

range between fixed costs ϕCi and ϕCi + r. Using these ideas, we decompose the fixed cost distribution

Fi(z) from Section A.1 into Fi(z) =
MR

i
Mi

FR
i (z) +

MU
i

Mi
FU

i (z) = FL
i (z − r)1(z ≤ gi + r) + FL

i (z)1(z ≥ gi).

A corresponding version of equation (3) under redevelopment is then:

γland
i ≡ d ln Li(Pi)

d ln Pi
= (

MR
i f R

i (ϕCi)

MR′
i

+
MU

i f U
i (ϕCi)

MR′
i

)
d ln Ai(Pi)

d ln Pi
ϕPi Ai(Pi), (23)

where MR′
i = MR

i FR
i (ϕCi) + MU

i FU
i (ϕCi) is the amount of land that is newly developed. Equation (23)

decomposes the land supply response into land redevelopment and new construction on undeveloped land

respectively.

Figure A1 shows plots of f L(x), f R(x) and f U(x) for an example tract. A few implications follow.

First, as Pi rises, marginal land parcels are developed left to right in the region of overlapping support of

the f R(x) and f U(x) distributions. Developers in neighborhoods with greater price growth carry out both

additional redevelopment and additional development of previously undeveloped land, relative to developers

in neighborhoods with smaller price growth, to supply new housing. Second, the relative magnitudes of

the land redevelopment versus new land development elasticities depend on the density of the fixed cost

distribution f L
i (x) at ϕCi and ϕCi + r and the relative amounts of previously undeveloped versus developed

land in the tract. Third, given that f R
i (ϕCi) and f U

i (ϕCi) both depend on parameters that govern the FL(x)

distribution, tract characteristics affect the redevelopment supply elasticity in the same way as the extensive

margin unit supply elasticity in equation (4).
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With these definitions of FR
i (x) and FU

i (x) established, the generic revised aggregate tract floorspace

supply function is

Si(Pi) = Ai(Pi)[MR
i FR

i (ϕCi) + MU
i FU

i (ϕCi)].

Relative to an initial baseline, prices rise such that gi < ϕCi < gi + r. As a result, developers draw from

both the previously developed and undeveloped land for their new developments.

d ln Si

d ln Pi
=

d ln Ai(Pi)

d ln Pi
+

MR
i f R

i (ϕCi) + MU
i f U

i (ϕCi)

MR
i FR

i (ϕCi) + MU
i FU

i (ϕCi)

d ln Ai(Pi)

d ln P
ϕPi A∗

i

=
d ln Ai(Pi)

d ln Pi
[1 +

MR
i f R

i (ϕCi)

MR′
i

+
MU

i f U
i (ϕCi)

MR′
i

]ϕPi A∗
i .

We want the unit supply elasticity γunit
i to decompose as γunit,R

i + γunit,U
i =

dHR
i /Hi

d ln Pi
+

dHU
i /Hi

d ln Pi
. As a

baseline, observe that

Hi = HR
i + HU

i =
Hi

Li
[MR

i FR
i (ϕCi) + MU

i FU
i (ϕCi)].

Differentiating,

dHR
i

Hi
=

H
L d[MR

i FR
i (ϕCi)] + MR

i FR
i (ϕCi)d H

L
H
L [M

R
i FR

i (ϕCi) + MU
i FU

i (ϕCi)]

=
d[MR

i FR
i (ϕCi)]

MR
i FR

i (ϕCi) + MU
i FU

i (ϕCi)
+

MR
i FR

i (ϕCi)

MR
i FR

i (ϕCi) + MU
i FU

i (ϕCi)
d ln

H
L

=
MR

i FR
i (ϕCi)

MR
i FR

i (ϕCi) + MU
i FU

i (ϕCi)
d ln[MR

i FR
i (ϕCi)] +

MR
i FR

i (ϕCi)

MR
i FR

i (ϕCi) + MU
i FU

i (ϕCi)
d ln

H
L

Therefore,

γunit,R
i =

MR
i FR

i (ϕCi)

MR′
i

[
d ln Hi/Li

d ln Pi
+

f R
i (ϕCi)

FR
i (ϕCi)

ϕPi A∗
i ].

Analogously,

γunit,U
i =

MU
i FU

i (ϕCi)

MR′
i

[
d ln Hi/Li

d ln Pi
+

f U
i (ϕCi)

FU
i (ϕCi)

ϕPi A∗
i ].

B.6 FAR Restriction

One particular tract characteristic considered in the empirical work is a floor-area-ratio (FAR) restriction

that constrains developers from building beyond some maximum intensity Ai. A binding FAR constrains
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the intensive margin supply response to 0.

The tract level FAR constraint is Floorspace
Lot Size = Di. Suppose that the price is sufficiently high such that the

developer builds up to the point that Ai = Di Mi, and is constrained at this point. Profits are now

πil = Pi Ai − gil − Ci(Ai)− pil ,

directly pinning down the parcel price through the 0-profit condition. Therefore, fraction Fi(Pi Ai −Ci(Ai))

of available land is developed.

With the tract developed at the maximum allowed floorspace on each parcel, the supply function is

ln SFAR
i = ln(Ai) + ln Mi + ln Fi(Pi Ai − Ci(Ai)).

Therefore, the tract supply elasticity comes from the extensive margin only. It is

d ln SFAR
i

d ln Pi
=

d ln LFAR
i

d ln Pi
=

fi(Pi Ai − Ci(Ai))

Fi(Pi Ai − Ci(Ai))
Ai. (24)

Depending on the shape of f , this could mean the relaxation of a FAR results in a greater or smaller extensive

margin supply elasticity. The selection effect of increasing variable profit from Pi Ai − Ci(Ai) to ϕCi(Ai)

may go in the opposite direction of the incentive effect of increasing marginal revenue from Ai to Pi A∗
i .

Equation (24) shows two forces through which a less binding FAR (increase in Ai) affects the supply

elasticity. First, the mechanical effect of being allowed to build more increases supply elasticity by making

more parcels viable for development with a marginal price increase. Second, a higher Ai attracts more

development on available parcels, thereby changing the supply of developable parcels at the marginal fixed

cost Pi Ai −Ci(Ai). This could dampen or increase supply elasticity depending on the form of the fixed cost

distribution fi(x). The net effect of a relaxation of a FAR on supply elasticity is thus an empirical question,

which is examined in Section 5.2.

C Housing Demand Model

This appendix fills in many of the details from the model presented in Section 3.2.
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C.1 Setup

The indirect utility person ω receives from living in tract i, commuting to tract j and working in industry k

is

vijkω =
viωBizijkωwjk

P1−β
i eκτij

, (25)

where Bi is a local amenity, wjk is the price of a unit of skill in commuting destination j and industry k, Pi is

the price of one unit of housing services in i and κτij is the fraction of time spent commuting for those living

in i and working in j. In the data, we observe the price Pi in year 2000 and beyond and the commuting time

τij in 1990 and 2000. The preference shocks viω are revealed first, leading agents to first choose residential

locations anticipating the quality of employment opportunities nearby but before productivity shocks are

revealed. Productivity shocks zijkω are then revealed and agents choose work locations second.

The productivity shock zijω is drawn from the Frechet distribution with shape parameter ε.

Fz(zijkω) = e−z−ε
ijkω , ε > 1 (26)

Productivity dispersion is decreasing in ε.

Following Tsivanidis (2022) and Couture et al. (2019), we specify a nested preference shock over res-

idential locations viω. This shock is also distributed Frechet but with shape parameters η and ψ. This

nested structure allows individuals to have different elasticities of substitution in demand between neigh-

borhoods within versus between municipalities, where municipalities are indexed by m and i(m) refers to

neighborhood i in municipality m.

Fv(viω) = exp[−∑
m
[∑
i(m)

v−η
iω ]−

ψ
η ], ψ > 1, η > 1 (27)

Incorporation of this second shock allows the model to generate situations in which people would choose

to reside in tracts with lower expected utilities as calculated based on
Bizijkωwjk

P1−β
i eκτij

alone. As a practical matter,

it also delivers a convenient expression for mean income net of commuting cost in each tract, as is derived

below. If the distribution functions for the two shocks are identical and η = ψ = ε, the utility shock

becomes redundant and this model reduces to one similar to that in Ahlfeldt et al. (2015).

Commensurate with the housing supply model in Appendix A, there is a constant elasticity housing

supply function with tract-specific elasticity γi expressed as Hs
i = ρiP

γi
i .

12



We solve the model backwards, first determining commute flows conditional on residential locations

and then determining population supply to residential locations anticipating wages net of commuting costs

in each residential location.

C.2 Work Location Choice

The fraction of residents of tract i that work in tract j and industry k can be expressed as πijk|i = Pr( viω Bizijkωwjk

P1−β
i eκτij

>=

maxj′,k′
viω Bizij′k′ωwj′k′

P1−β
i e

κτij′ ). Using the properties of the Frechet draws zijkω, we have:

πijk|i =

[
wjke−κτij

]ε

∑k ∑j′
[
wj′ke−κτij′

]ε

Summing over industries k, we have the commuting probabilities from i to j conditional on living in i.

πij|i =
∑k

[
wjke−κτij

]ε

∑k ∑j′
[
wj′ke−κτij′

]ε ≡ ∑k
[
wjke−κτij

]ε

RMAi
(28)

We write this expression as a function of resident market access RMAi ≡ ∑k ∑j
[
wjke−κτij

]ε, which is a

summary measure of the access to employment opportunities from residential neighborhood i.

C.3 Residential Location Choice

Before the productivity shock is revealed, the expected income (wage net of commuting cost) yi associated

with residing in tract i is E(maxj,k
wjkzijkω

eκτij ). Solving this through,

yi = Γ(1 − 1
ε
)(RMA)

1
ε
i (29)

This object is increasing in RMAi and declining in ε. As ε increases, there is less dispersion in skill prices

across locations, reducing the probability of receiving high wage offers.

The probability that i is the highest utility residential location is the probability that the inclusive value

of municipality m is the highest times the probability that neighborhood i is the highest utility neighborhood

in municipality m. Using properties of the Frechet distribution, this second object is

(
Bi P

β−1
i yi

)η

∑i′∈m(i)

(
Bi′ P

β−1
i′ yi′

)η . The

first object is
∑i′∈m(i)

(
Bi′ P

β−1
i′ yi′

)η
]

ψ
η

∑m[∑i′′∈m

(
Bi′′ P

β−1
i′′ yi′′

)η
]

ψ
η ]

. Plugging yi into both objects yields the population supply function

13



to tract i

πi = µ[ ∑
i´∈m(i)

(
Bi′P

β−1
i′ RMA

1
ε

i′

)η

]
ψ
η −1

(
BiP

β−1
i RMA

1
ε
i

)η

, (30)

where µ = 1/ ∑m[∑i′′∈m

(
Bi′′P

β−1
i′′ RMA

1
ε

i′′

)η

]
ψ
η . This expression reflects the attractiveness of neighbor-

hood i’s amenities and labor market opportunities as balanced against its housing cost. This attractiveness is

relative to the attractiveness to other neighborhoods in the municipality m(i), captured by the object inside

the summation.

C.4 Labor Supply and Market Access

Labor supply, or the number of people working in tract j, can be calculated as Lj = ∑m ∑i(m) πiπij|i. This

calculation yields

Lj = µ ∑
k

[
wε

jk

]
∑
m

∑
i(m)

e−κετij

[
[ ∑
i´∈m(i)

(
Bi′P

β−1
i′ RMA

1
ε

i′

)η

]
ψ
η −1

(
BiP

β−1
i

)η
RMA

η
ε −1
i

]
. (31)

Define “Firm Market Access” FMAj = µ ∑m ∑i(m) e−κετij

[
[∑i´∈m(i)

(
Bi′P

β−1
i′ RMA

1
ε

i′

)η

]
ψ
η −1

(
BiP

β−1
i

)η
RMA

η
ε −1
i

]
,

a measure of the access to workers enjoyed by firms in tract j. Plugging ∑k

[
wε

jk

]
= Lj/FMAj into the

definition RMAi = ∑j e−εκτij
[
∑k wε

jk

]
yields the relationship

RMAi = ∑
j

e−κετij Lj

FMAj
.

Going back to its definition, note that FMAj = ∑m ∑i(m)
e−κετij πi
RMAi

. For notational simplicity, we write this

as

FMAj = ∑
i

e−κετij πi

RMAi
.

Using data on employment Lj, residents πi, the parameter cluster κε and commute times τij, we can calculate

FMAj and RMAi by solving this system of equations above.
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C.5 Housing Demand

An individual who lives in i and works in j in industry k has housing demand of (1 − β)
yi
Pi

from Cobb-

Douglas preferences. We assume that all sites in each residential location i are perfect demand substitutes,

justifying the uniform price per unit of housing services Pi. After multiplying individual housing demand

by tract population, the log aggregate residential floorspace demand in tract i can be expressed as

ln Sd
i = ln ρHD +

1
ε

ln(RMAi) + ln πi − ln Pi. (32)

Here, ρHD = (1 − β)Γ(1 − 1
ε ). ln Sd

i is increasing in RMAi conditional on population πi because greater

RMAi is associated with greater income for tract residents. Conditional on Pi, equilibrium tract residential

population πi is also increasing in RMAi. Thus, shocks to RMAi result in housing demand shocks. This is

the key insight used for identification in the empirical work.

Equalizing with the constant-elasticity housing supply function, the equilibrium price of floorspace is

given by

ln Pi =
1

ε(γi + 1)
ln RMAi +

1
γi + 1

ln πi +
1

γi + 1
ln[

(1 − β)

ρi
Γ(1 − 1

ε
)] (33)

This expression has the intuitive features that more elastic supply is associated with lower prices and better

labor market opportunities and higher population are associated with higher prices.

C.6 Equilibrium Neighborhood Change

Substituting for (30) into (33), solving for price and time differencing yields the growth rate in tract house

price, expressed as follows.

∆ ln Pi =
1 + η

ε[γi + 1 + η(1 − β)]
∆ ln RMAi +

ψ/η − 1
γi + 1 + η(1 − β)

∆ ln ∑
i´∈m(i)

(
Bi′P

β−1
i′ RMA

1
ε

i′

)η

]+
∆ ln[Bη

i /ρi]

γi + 1 + η(1 − β)

(34)

The second term of this equation can be viewed as a municipality fixed effect if γi does not differ across

tracts within municipalities. The final term can be viewed as an error term, while recognizing that RMAi

includes tract amenity Bi, tract housing productivity ρi and tract supply elasticity γi. The first term shows that

tracts within a municipality that have larger positive shocks to employment opportunities have more rapid

home price growth, as is intuitive. Implicit differentiation of (34) yields that ∂ ln Pi
∂ ln RMAi

> 0 unconditional
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on municipality fixed effects as well provided that tracts within the same municipality are stronger demand

substitutes than tracts in different municipalities. The magnitude of capitalization of improved labor market

opportunities is decreasing in the floorspace supply elasticity γi. This capitalization is also decreasing in the

dispersion of amenity draws, which is negatively related to η. This happens because for higher η, population

inflow frictions to tract i are smaller in response to increases in RMAi.

Time differencing (30), the growth rate in tract population can be written in general terms as

∆ ln πi = ∆ ln µ + Gi + (
ψ

η
− 1) ∑

i´∈m(i)
Sm

i′ Gi′ ,

where Gi = η(β − 1)∆ ln Pi +
η
ε ∆ ln RMAi + η∆ ln Bi. This expression captures the housing price, labor

market opportunity and amenity impacts in tract i and tract i’s municipality respectively. Sm
i′ is the initial

share of municipality m’s population in tract i′. Summing over all tracts in municipality m, the resulting

municipality level population growth rate is

∆ ln πm = ∆ ln µ +
ψ

η ∑
i∈m

Sm
i Gi.

This expression reflects a common growth rate and a population share weighted tract growth rate that de-

pends on tract housing prices, labor market opportunities and amenities.

Substituting for d ln Pi yields the following equilibrium relationship between ∆ ln RMAi and the popu-

lation growth rate in tract i.

∆ ln πi =
γi + β

γi + 1 + η(1 − β)

η

ε
∆ ln RMAi +

γi + β

γi + 1 + η(1 − β)
(

ψ

η
− 1) ∑

i´∈m(i)
Sm

i′ G̃i′ + uπ
i , where

G̃i′ =
η

ε

γi′ + β

γi′ + 1
∆ ln RMAi′ −

η(1 − β)

γi′ + 1
∆ ln πi′ +

η(1 − β)

γi′ + 1
∆ ln ρi′ + η∆ ln Bi′ and

uπ
i =

γi + β

γi + 1 + η(1 − β)
[∆ ln µ + η∆ ln Bi −

1 − β

γi′ + 1
η∆ ln ρi]

As with (34) above, we have a tract-specific component, a municipality-specific component and an idiosyn-

cratic component. Summing up over tracts within each municipality m, we derive the following implicit

equation which describes the relationship between ∆ ln RMAi and municipality level aggregates of tract
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population growth ∆ ln πi.

∑
i(m)

Sm
i [1 +

ψ(1 − β)

1 + γi
]∆ ln πi − Λ − ψ

ε ∑
i(m)

[Sm
i (1 −

1 − β

1 + γi
)]∆ ln RMAi = um (35)

As ψ rises, dispersion in preferences across municipalities falls. As a result, positive shocks to RMA in any

neighborhoods within m result in more rapid population growth in this municipality.

From (7) and (12), aggregate housing demand in each tract is given by

ln Sd
i = ln ρ̃HD +(

ψ

η
− 1) ln ∑

i´∈m(i)

(
Bi′P

β−1
i′ RMA

1
ε

i′

)η

+
1 + η

ε
ln(RMAi)− (η(1− β)+ 1) ln Pi + η ln Bi.

Housing demand becomes more elastic as η and ψ
η grow, as these objects reflect how fundamentally substi-

tutable neighborhoods are for each other by residents.

D Comparison With Estimates in Saiz (2010)

Saiz (2010) reports estimates of unit supply elasticities in the period 1970-2000 calculated for 237 metro

regions that coincide with those in our data. Saiz (2010) regresses the 1970-2000 difference in home price

on the corresponding difference in the log number of households at the MSA level, where home price

is measured as the metro area median self-reported home value in the census. Change in households is

instrumented with a Bartik labor demand shock, log average hours of sun in January and the share of new

immigrants in the metro area. Saiz’ estimates are greater in magnitude and exhibit more dispersion (with a

mean of 2.54 and a s.d. of 1.43) than do our metro region estimates (with means of 0.38-0.41 and a s.d. of

0.11).

Differences between the two sets of supply elasticity estimates can be explained by differences in period

of study, aggregation, and differences in price and quantity measures. Table A8 replicates Saiz’ estimation

for the 2000-2010 period using the same set of metros, specifications and variables. The average implied

metro supply elasticity declines to 1.25 for 2000-2010, indicating that many metropolitan areas have become

increasingly supply constrained over time. Moreover, as seen in (20) and (21), our aggregation weights

tracts with initial housing stocks (Hir) more heavily. Since these tracts are typically associated with smaller

subsequent housing supply responses, the resulting γ1
r and γ2

r should be less than γSaiz
r , which implicitly

uses quantity variation from neighborhoods that were more supply responsive to the metro level Bartik
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shocks. A third difference between two approaches is the underlying measure of home price growth. For

2000-2010, the mean (median) MSA-level price growth is 45% (40%) based on census median self-reported

home values but 24% (24%) based on the FHFA repeat-sales price index.

Figure A5 presents a comparison of the FMM-IV metro elasticities (2000-2010) with the original Saiz

elasticities (1970-2000) and their updated counterparts (2000-2010). Despite the differences in magnitudes,

the Spearman rank correlation of FMM-IV metro elasticities to Saiz’ 1970-2000 elasticities is 0.49. The

FMM-IV versions have much higher correlations with Saiz’ than do the simpler IV versions.
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Online Appendix Tables and Figures

Table A1: OLS Housing Supply Elasticity Estimates
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Total Total Total Total Total
Subset of Total New Remain. New Remain.

Subset of New/Remain. Redev. Expan. Expan.
Units Floorsp. Units Units Units Units Units Floorspace Flooorspace Floorspace Floorspace Land

Time Period 2000-2006 2000-2006 2000-2010 2000-2010 2000-2010 2000-2010 2000-2010 2000-2010 2000-2010 2000-2010 2000-2010 2001-2011
Panel A: Housing Quantities Measured Using Zillow Data Only

Repeat Sales Index 0.06*** 0.07*** 0.07*** 0.06*** 0.01*** 0.00 0.01*** 0.09*** 0.09*** -0.01 -0.00 0.02***
(0.01) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.00) (0.00)

Obs 30,500 30,048 30,838 30,838 30,838 30,834 30,377 30,381 30,392 30,376 30,377 30,838
Hedonic Index 0.08*** 0.09*** 0.10*** 0.09*** 0.03*** 0.01* 0.01*** 0.11*** 0.12*** -0.02** -0.01 0.03***

(0.01) (0.01) (0.01) (0.01) (0.00) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.00)
Obs 29,272 29,272 29,422 29,422 29,422 29,418 29,422 29,422 29,422 29,421 29,422 29,422

Panel B: Housing Quantities Measured Using Census and ACS Data Only
Repeat Sales Index 0.09*** 0.06*** 0.03***

(0.01) (0.01) (0.01)
Obs 30,838 30,827 30,827
Hedonic Index 0.12*** 0.08*** 0.04***

(0.01) (0.01) (0.01)
Obs 29,422 29,411 29,411
Regressions include metro region fixed effects, a cubic in fraction of the way from the CBD to the metro edge, fraction tract developed in 2001, fraction of tract land that is flat, log 1990 tract employment, the 2000-2006 Bartik shock for the

tract and the following tract attributes measured in 1990 and 2000: census home price index, rent index, log population, log avg hh income, share black, share white and share college. The estimation sample for the repeat sales index uses

data from 167 metro regions while that for the hedonic index uses data from 165 regions. These samples are reduced 1 region for the repeat sales index floorspace outcomes due to missing floorspace information for some tracts. Entries in

Columns 1 and 2 use 164-166 regions. The hedonic index sample excludes tracts in the repeat sales sample containing homes for which age and/or floorspace are not observed in 2000 or 2010. All outcomes are measured using the ZTRAX

data except developed land, which uses USGS land cover information. Analogous regressions using census and/or ACS based measures for changes in units or new units are statistically identical.
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Table A2: Robustness Checks for Table 2 on Employment and Housing Dynamics
Panel A: Tract Level Regressions of Employment Growth on Bartik Shocks

(1) (2)
Change in Log Employment

2000-2006 2000-2010
Tract Bartik Shock, 2000-2006 0.69*** 1.04***

(0.10) (0.10)
No 1990 Emp. Info. 0.18** 0.32***

(0.09) (0.09)
Demographic controls No No
Observations 51,900 56,043
R-squared 0.01 0.01
Number of Regions 158 169
Panel B: Tract-Level Housing Market Dynamics

(1) (2) (3)
∆ln House Price, 00-10 ∆ln House Quantity, 00-10 ∆ln Simulated RMA, 2000-2006

∆ln House Price, 1990-2000 -0.25*** 0.01 0.0000
(0.01) (0.01) (0.0001)

∆ln House Quantity, 1990-2000 -0.02 0.24*** -0.0002
(0.03) (0.04) (0.0002)

Demographics 90+00 90+00 90+00
∆ln House Price, 1990-2000 -0.21*** 0.01 0.0001

(0.01) (0.01) (0.0001)
∆ln House Quantity, 1990-2000 -0.01 0.22*** 0.0003***

(0.01) (0.01) (0.0000)
Demographics 90 90 90
∆ln House Price, 1990-2000 -0.21*** 0.00 0.0001

(0.01) (0.01) (0.0001)
∆ln House Quantity, 1990-2000 0.00 0.26*** 0.0002***

(0.01) (0.01) (0.0000)
Demographics No No No
Panel A: Regressions include the same controls as in Table 2 Panel A excluding demographic variables.

Panel B: Each entry is from a separate regression of the variable at top on the variable at left with the indicated fixed effects. Controls are the same as in Table 2 Panel

B except for demographic variables from indicated year(s).
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Table A3: Robustness Checks for Unified IV Results
(1) (2) (3) (4) (5)

Panel A Total New Remain Total Total
Units 2000-2010 Units 2000-2010 Units 2000-2010 Floorspace 2000-2010 Quality-adjusted floorspace 2000-2010

Census and ACS data Census and ACS data Census and ACS data Zillow data Zillow data
Repeat Sales Index 0.31*** 0.23** 0.09 0.42*** 0.40***

(0.11) (0.09) (0.06) (0.16) (0.14)
Obs 30,838 30,827 30,827 30,381 30,838
Hedonic Index 0.27** 0.21** 0.08 0.44*** 0.44***

(0.11) (0.09) (0.06) (0.16) (0.14)
Obs 29,422 29,411 29,411 29,422 29,422
Panel B Total New Redev. Remain Expan.

Units 2000-2010 Units 2000-2010 Units 2000-2010 Units 2000-2010 Units 2000-2010
Zillow data Zillow data Zillow data Zillow data Zillow data

Hedonic Index 0.37*** 0.18** 0.03 0.19** 0.09
(0.12) (0.09) (0.03) (0.08) (0.06)

Obs 29,422 29,422 29,422 29,418 29,422
Panel C Total New Remain Expan. Total

Floorspace 2000-2010 Floorspace 2000-2010 Floorspace 2000-2010 Floorspace 2000-2010 Land 2001-2011
Zillow data Zillow data Zillow data Zillow data Zillow data

Hedonic Index 0.44*** 0.32*** 0.12 0.08 0.09
(0.16) (0.11) (0.11) (0.09) (0.07)

Obs 29,422 29,422 29,421 29,422 29,422
Panel D Total New Redev. Remain Expan.

Units 2000-2010 Units 2000-2010 Units 2000-2010 Units 2000-2010 Units 2000-2010
Zillow data Zillow data Zillow data Zillow data Zillow data

Hedonic Index 0.36*** 0.18* 0.05 0.19** 0.08
(0.13) (0.10) (0.05) (0.08) (0.06)

Obs 29,422 29,422 29,422 29,418 29,422
Repeat Sales Index 0.33*** 0.18** 0.06 0.16** 0.07

(0.12) (0.09) (0.05) (0.08) (0.06)
Obs 30,838 30,838 30,838 30,834 30,377
Panel E Total New Remain Expan. Total

Floorspace 2000-2010 Floorspace 2000-2010 Floorspace 2000-2010 Floorspace 2000-2010 Land 2001-2011
Zillow data Zillow data Zillow data Zillow data Zillow data

Hedonic Index 0.41** 0.31** 0.11 0.07 0.10
(0.16) (0.12) (0.10) (0.09) (0.07)

Obs 29,422 29,422 29,421 29,422 29,422
Repeat Sales Index 0.38** 0.27** 0.11 0.07 0.10

(0.16) (0.12) (0.10) (0.09) (0.07)
Obs 30,381 30,392 30,376 30,377 30,838
The specification is the same as Table 4. Panels B and C repeat the estimation in Columns (2)-(12) in Table 4 using hedonic index price growth. Panel D and E repeat the estimation in Columns (2)-(12) in Table 4

and in Panel B above without demographic controls.
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Table A4: Unified IV Results with Alternative IVs
(1) (2) (3) (4) (5) (6)

Total Total Total Total
New New

Units Units Floorspace Units Floorspace Land
Time Period 2000-2010 2000-2010 2000-2010 2000-2010 2000-2010 2001-2011

Census data
Panel A: Including all industries

Repeat Sales Index 0.30*** 0.32*** 0.42*** 0.19** 0.29** 0.08
(0.11) (0.11) (0.15) (0.08) (0.12) (0.06)

First stage F 24.17 24.17 22.68 24.17 22.51 24.17
Obs 30,838 30,838 30,381 30,838 30,392 30,838

Panel B: Excluding construction industries
Repeat Sales Index 0.30*** 0.35*** 0.42*** 0.19** 0.29** 0.09

(0.11) (0.12) (0.16) (0.08) (0.12) (0.06)
First stage F 22.01 22.01 20.35 22.01 20.24 22.01
Obs 30,838 30,838 30,381 30,838 30,392 30,838

Panel C: Excluding construction and FIRE industries
Repeat Sales Index 0.30*** 0.35*** 0.39** 0.19** 0.29** 0.09

(0.11) (0.12) (0.16) (0.08) (0.12) (0.06)
First stage F 21.71 21.71 20.06 21.71 19.97 21.71
Obs 30,838 30,838 30,381 30,838 30,392 30,838

Panel D: Excluding construction and real estate industries
Repeat Sales Index 0.30*** 0.35*** 0.40** 0.18** 0.28** 0.08

(0.11) (0.12) (0.16) (0.08) (0.12) (0.06)
First stage F 21.68 21.68 20.05 21.68 19.96 21.68
Obs 30,838 30,838 30,381 30,838 30,392 30,838
Estimation sample and specifications are the same as in Table 4.
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Table A5: Quadratic IV Model: Heterogeneity in Supply Elasticities by CBD Distance and Tract Condition

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Total Total Total

Subset of Total New Remain. New Remain.

Subset of New/Remain. Redev. Expan. Expan.

Units Units Units Units Units Units Floorspace Floorspace Floorspace Floorspace Land

∆lnP 0.11 1.40*** 0.96*** 0.13* 0.47** 0.21 1.42*** 0.96*** 0.35 0.17 0.38**

(0.12) (0.37) (0.29) (0.07) (0.20) (0.13) (0.45) (0.36) (0.27) (0.22) (0.19)

∆lnP x (CBD Dis) 1.89** -0.79*** -0.65*** -0.17*** -0.15 -0.08 -0.68** -0.72*** 0.13 0.13 -0.37***

(0.73) (0.25) (0.22) (0.05) (0.11) (0.08) (0.28) (0.25) (0.16) (0.12) (0.13)

∆lnP x %Dev -4.52*** -4.02*** -0.59*** -0.51 -0.24 -4.66*** -3.89*** -0.31 0.09 -1.49***

(0.91) (0.77) (0.19) (0.38) (0.20) (1.01) (0.87) (0.55) (0.36) (0.43)

∆lnP x %Dev2 3.84*** 3.54*** 0.60*** 0.30 0.09 4.20*** 3.41*** 0.39 -0.24 1.17***

(0.81) (0.69) (0.22) (0.37) (0.18) (0.91) (0.78) (0.59) (0.34) (0.37)

∆lnP x %Flat 0.28** 0.38*** 0.08** -0.12** -0.02 0.33** 0.49*** -0.19** -0.09* 0.20***

(0.12) (0.13) (0.03) (0.05) (0.03) (0.14) (0.16) (0.08) (0.05) (0.07)

∆lnP x (CBD Dis)2 -1.84**

(0.78)

Observations 30,838 30,838 30,838 30,838 30,834 30,377 30,381 30,392 30,376 30,377 30,838

Kleib-Paap F-Stat 5.330 5.330 5.330 5.330 5.060 5.083 5.013 5.049 5.060 5.330

Regressions are the same specification as in Table 5 with the addition of the quadratic term. The repeat sales price index measure is used throughout. SE adjusted for spatial autocorr. to 16 km.
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Table A6: Impacts of Regulation and Highway on Supply Elasticities
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Units New Units Redev.Units Floorspace New Floorspace Dev. Land Units Units
∆lnP 4.24 3.66 0.63 5.93 2.27 4.05 0.04 2.06 0.82*** 0.88***

(2.92) (2.43) (0.53) (4.65) (7.82) (3.17) (2.95) (1.44) (0.24) (0.25)
∆lnP x (CBD Dis) 0.17 -0.06 -0.04 0.62 3.01 -0.01 -1.02 -0.14 -0.55** -0.56**

(0.69) (0.55) (0.12) (1.03) (7.95) (0.65) (3.12) (0.33) (0.24) (0.24)
∆lnP x %Dev -12.91 -11.96* -1.85 -17.18 -2.76 -13.01 -2.18 -6.86* -1.42*** -1.51***

(8.07) (6.79) (1.47) (12.01) (12.67) (8.35) (5.82) (3.90) (0.39) (0.40)
∆lnP x %Dev2 10.33 9.74* 1.36 14.21 0.68 10.78* 2.38 5.55*

(6.41) (5.40) (1.18) (9.29) (9.52) (6.49) (5.23) (3.06)
∆lnP x %Flat 0.51 0.46 0.14 0.39 -1.35 0.49 0.80 0.29 0.29** 0.31**

(0.42) (0.36) (0.09) (0.55) (5.78) (0.40) (2.37) (0.22) (0.12) (0.12)
∆lnP x WRLURI -0.03 -0.04 -0.01 -0.02 -0.04 -0.02

(0.04) (0.03) (0.01) (0.06) (0.04) (0.02)
Robust SE [0.03] [0.02]** [0.01] [0.04] [0.03] [0.01]**
∆lnP x (Res. FAR) 0.07* 0.01

(0.04) (0.05)
Robust SE [0.04] [0.02]
∆lnP x Highway 0.19***

(0.07)
∆lnP x Intst Highway 0.16**

(0.08)

Observations 12,361 12,361 12,361 12,149 2,128 12,155 2,128 12,361 30,838 30,838
Number of Regions 144 144 144 144 13 144 13 144 167 167
Regressions are the same specification as in Table 5 with the addition of indicated interaction terms. For WRLURI interactions, the main effect is excluded to maintain statistical power.
Its inclusion increases the magnitude of the related interacted coefficient. FAR main effects are included in those interacted regressions. The repeat sales price index measure is used
throughout. SE in parenthesis are adjusted for spatial autocorrelation to 16 km. SE in brackets are robust.
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Table A7: Quadratic Finite Mixture Model Housing Supply Interacted Regressions

Outcome Units New Units Floorspace New Floorspace Developed Land

Panel A: Logit Coefficients for Membership in Class 2 (More Inelastic Supply)

Fraction Developed within 50 km of the CBD 5.38*** 4.31*** 4.40*** 3.81*** 5.30***

(0.61) (0.64) (0.61) (0.60) (0.64)

Fraction Developed within 50 km of the CBD Unavail. 0.51* 0.28 1.08*** 0.38 0.34

(0.29) (0.26) (0.32) (0.27) (0.29)

Metro Wharton Index. 0.03 0.13** -0.67*** 0.12** 0.11*

(0.06) (0.06) (0.09) (0.05) (0.06)

Constant 0.58*** 1.09*** 0.77*** 1.19*** 1.04***

(0.12) (0.11) (0.14) (0.11) (0.12)

Panel B: Second Stage Estimates

Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2

∆lnP 2.93** 0.37* 2.83** 0.15 3.15* 0.85** 1.88 0.17 -0.05 0.14

(1.15) (0.21) (1.26) (0.11) (1.74) (0.35) (1.78) (0.14) (0.70) (0.13)

∆lnP x (CBD Dis) -1.39** -0.07 -1.52*** 0.04 -1.80** 0.02 -1.12 -0.01 -0.98** -0.03

(0.61) (0.11) (0.58) (0.07) (0.75) (0.23) (0.69) (0.08) (0.41) (0.06)

∆lnP x %Dev -9.13*** -1.05*** -10.82*** -0.88*** -9.45*** -2.16*** -7.58** -0.96*** -0.83 -0.43

(2.24) (0.40) (2.85) (0.21) (3.12) (0.62) (3.59) (0.25) (1.49) (0.26)

∆lnP x %Dev2 7.55*** 0.96*** 8.96*** 0.89*** 8.40*** 1.81*** 6.51** 0.98*** -0.12 0.36*

(1.93) (0.31) (2.63) (0.18) (2.72) (0.52) (2.97) (0.23) (1.49) (0.21)

∆lnP x %Flat 0.41 0.04 0.78** 0.08** 0.76** 0.06 1.04*** 0.11** 0.47** 0.03

(0.29) (0.04) (0.33) (0.04) (0.36) (0.08) (0.40) (0.05) (0.20) (0.02)

Mean Class Probability 0.22 0.78 0.16 0.84 0.24 0.76 0.15 0.85 0.16 0.84

Mean implied γ 0.85 0.16 0.53 0.04 1.13 0.45 0.50 0.04 -0.42 0.06

SD implied γ 0.73 0.08 0.86 0.07 0.70 0.20 0.63 0.07 0.25 0.03

Notes: Models use the same specification as in Table 6, with the addition of the quadratic interaction term in developed fraction and a control for developed fraction squared. Sample sizes are the same

as in Table 6.
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Table A8: Metro Level Supply Regressions

Quantity Measure Households Households Households Households Households Households Households Households Households Households Households Units Units Units Units

Price Measure Median Median Median Median Median Median Median Median Median Median Median Median Median FHFA Index FHFA Index

Time Period 1970-2000 (from Saiz, 2010) 2000-2010 2000-2010 2000-2010 2000-2010 2000-2010 2000-2010 2000-2010 2000-2010 2000-2010 2000-2010 2000-2010

∆lnQ 0.650*** 0.336*** 0.06 1.246*** 0.675*** 1.035*** -0.195 -0.142 -0.146 -0.0257 -0.0676 0.0381 0.298

(-0.107) (-0.116) (-0.215) (0.222) (0.250) (0.284) (0.363) (0.578) (0.583) (0.330) (0.505) (0.476) (0.677)

∆lnQ X Unavail Land 0.560*** 0.511*** -5.260** 2.182*** 0.910 1.931*** 0.335 -8.624 -0.506 1.478*** 0.249 0.142 -1.009

(-0.118) (-0.214) (-1.396) (0.546) (0.736) (0.514) (0.704) (6.468) (6.678) (0.417) (0.679) (0.313) (0.626)

∆lnQ X Unavail 0.475** 0.818 0.0536

X ln Base Yr Pop (-0.119) (0.507) (0.508)

∆lnQ X ln(WRLURI+3) 0.237* 0.280** 0.715** 1.225 0.525** 1.209* 0.555* 1.081 -0.0972 0.0580

(-0.13) (-0.077) (0.339) (0.764) (0.216) (0.730) (0.285) (0.666) (0.340) (0.631)

Unavail Land 0.203* 0.257** -2.291** 0.217* 0.215**

(0.123) (0.111) (1.168) (0.116) (0.0989)

ln(WRLURI+3) -0.104 -0.0937 -0.113 -0.0336

(0.104) (0.0979) (0.103) (0.0750)

First Stage F 44.41 31.37 18.37 12.33 12.48 25.00 8.311 15.66 10.19 20.79 9.053

Mean of Implied elasticity 1.54 2.19 2.56 2.54 0.803 0.910 0.803 1.270 0.949 1.253 0.855 1.300 1.011 -58.29 2.990

SD of Implied elasticity 0 0.48 0.88 1.43 0 0.299 0.111 0.780 0.485 0.683 0.341 0.603 0.444 664.8 42.22

Robust standard errors in parentheses. The table shows the coefficient of 2SLS estimation of a metropolitan housing supply equation with Census region fixed effects. The left block reproduces Tables III and V in Saiz (2010). Remaining columns replicate similar specifications using 2000-2010 data. Instruments used for

demand shocks are a shift-share of the 1974 metropolitan industrial composition, the magnitude of immigration shocks, and the log of January average hours of sun. While 2000-2010 data constraints reduce the estimation sample from 269 to 193 metros (234 in the final two columns), predicted γ distributions with means

and SD reported at the bottom use predicted values for the full Saiz sample of 269 metros.
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Robustness Check for Table 5

(1) (2) (3) (4) (5) (6)

Total Total Total

Subset of Total New New

Units Units Units Floorspace Floorspace Land

∆lnP 0.302*** 0.302** 0.077 0.322* 0.143 0.044

(0.095) (0.121) (0.088) (0.166) (0.124) (0.066)

∆lnP x (CBD Dis) 0.348*** 0.348** 0.366*** 0.396* 0.310* 0.079

(0.097) (0.175) (0.131) (0.206) (0.162) (0.081)

∆lnP x %Flat -0.028 -0.028 0.090 0.046 0.178** 0.056

(0.053) (0.078) (0.064) (0.097) (0.089) (0.044)

Observations 30,838 30,838 30,838 30,381 30,392 30,838

Regressions are the same specification as in Table 4 with the addition of indicated interaction terms. The repeat

sales price index measure is used throughout. SE adjusted for spatial autocorr. to 16 km. If included where

omitted, coefficients on ∆lnP x (CBD Dis)2 would be insignificant.
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Figure A1: Example Fixed Cost Distributions
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Figure A2: Spatial Covariance Function
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Figure A3: Kernel Densities of Predicted Elasticities
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