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Abstract

Knowledge of microgeographic housing supply elasticities is central for quantitative anal-

ysis addressing a wide range of urban questions. Across 50,409 urban census tracts in 306

metros, we find average price elasticities of floorspace, developed land, housing unit and re-

developed unit supply of 3.0, 0.2, 0.5 and 0.15 respectively. With a mean of 87%, floorspace

per unit thus accounts for by far the largest fraction of floorspace supply responses to price

shocks. Land development, unit and floorspace supply responses all grow with CBD distance,

mostly due to the increasing availability of undeveloped land. Tracts with more flat land and

less regulation also exhibit more elastic supply. Identification comes from variation in labor

demand shocks to commuting destinations, as aggregated using insights from an urban eco-

nomic geography model. Aggregation of neighborhood level supply elasticities yields metro

area supply elasticities that are correlated with but smaller than those in Saiz (2010).
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1 Introduction

Housing supply conditions vary considerably both between and within urban areas. While the

existing literature documents large differences in housing supply elasticities between cities (Saiz,

2010; Cosman, Davidoff, & Williams, 2018), little empirical evidence exists on how supply elas-

ticities differ within cities as a function of distance to the center, land availability, building den-

sities and zoning restrictions. Knowledge of housing supply elasticities at a microgeographic

scale is central to understanding spatial variation in booms and busts within housing markets

(Glaeser, Gottlieb, & Tobio, 2012; Guerrieri, Hartley, & Hurst, 2013), growth patterns at urban

fringes (Glaeser, Gyourko, & Saks, 2005), consequences of neighborhood specific labor or hous-

ing demand shocks (Couture, Gaubert, Handbury, & Hurst, 2019) and implications of place-based

policy interventions such as targeted neighborhood investment, land use restrictions, and trans-

portation infrastructure investments (Busso, Gregory, & Kline, 2013; Hanson, 2009). This study

empirically characterizes housing supply elasticities for all residential neighborhoods in 306 U.S.

metro areas. We decompose supply responses of housing services into those for land develop-

ment, housing units per parcel and floorspace per unit. We also investigate redevelopment in

existing developed areas. We demonstrate how housing supply conditions vary by neighborhood

location, available land, topography and regulation. We then aggregate neighborhood level hous-

ing supply elasticities to the metro area level, highlighting the fact that the aggregation scheme is

specific to the nature of the demand shock and to the degree of housing demand substitutability

across neighborhoods. Finally, we apply our estimates of neighborhood-level supply and demand

function parameters to evaluating the efficacy of “Opportunity Zone” (OZ) provisions in the 2017

“Tax Cuts and Jobs Act”.

We estimate supply elasticities both by units and by floorspace. Across tracts, average unit

supply elasticity is about 0.5, with about one-third of the unit supply response coming through

new units built on already developed land. Average housing service elasticity, represented by

floorspace, is 3.0. With an average estimated land development price elasticity of only 0.2, at least

65% of the floorspace response comes in the form of floorspace per unit rather than total units or

new parcel development in over 95% of the neighborhoods.

Housing supply elasticities exhibit substantial within-city variation. Land development, unit

and floorspace supply responses all grow with distance from central business districts (CBDs). At
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CBDs, they are on average 0, 0.1 and 2.3 respectively, growing to 0.3, 1.0 and 4.8 respectively at

urban fringes. The positive CBD distance profile is mainly driven by the fact that the fraction of

developed land decreases as one moves away from the CBD. Tracts with more flat land and less

stringent regulations also exhibit more elastic supply. Resulting estimates range from 0.1 to 0.9 for

the 25th and 75th percentile neighborhoods for unit supply and 2.1 to 3.7 respectively for housing

services supply. Conditional on neighborhood topography and land development patterns, we

do not find evidence that metro level factors matter for local supply elasticities.

Our supply elasticity estimates are consistent with the literature in several ways. First, re-

cent housing production function literature indicates approximately Cobb-Douglas form with a

land share of 0.2-0.35 (Ahlfeldt & McMillen, 2014; Combes, Duranton, & Gobillon, 2019; Albouy,

Ehrlich, & Shin, 2018), implying housing services supply elasticities of 2-4, which match well with

the range of our floorspace estimates. Turning to the unit supply, our tract-level elasticities are

roughly similar to the municipality-level elasticities in recent work based on Switzerland and se-

lected U.S. cities (von Ehrlich, Schöni, & Büchler, 2018; Orlando & Redfearn, 2018), but mostly

smaller than the metro-level supply elasticities in Saiz (2010). One reason is that aggregation from

micro to macro elasticities incorporates substitution patterns across neighborhoods in residents’

neighborhood system. As neighborhoods become stronger demand substitutes, a shock affecting

labor market opportunities in one location affects housing demand in a wider range of areas, as

households are more willing to substitute across residential options to take advantage of lower

housing prices in some places. This opens up more opportunities for supply elastic neighbor-

hoods to be included and hence results in greater macro supply elasticities than the neighborhood

level.

We approach recovery of neighborhood level housing supply elasticities as the fundamentally

reduced form problem of identifying coefficients in regressions of changes in tract level housing

quantities on changes in a tract level home price index. Our reduced form estimation is micro-

founded on a stylized model of neighborhood housing supply. The model provides a natural basis

for decomposing the residential floorspace supply elasticity into extensive and intensive margins

and for understanding the magnitude and determinants of our estimated supply elasticities. In

doing so, the model highlights the mechanism through which land share, initial development

density, topography and regulation affect the housing supply elasticity.

2



The central challenge in identifying housing supply is to find an exogenous source of variation

that shifts neighborhood level housing demand but not local fundamentals including construc-

tion costs. This identification challenge is particularly daunting for recovering within-city supply

elasticities, as most shocks that impact housing demand in one neighborhood would also affect

housing demand for nearby neighborhoods, making it difficult to trace out housing supply in any

specific neighborhood. To achieve identification, similar to Severen (2019), we use Bartik (1991)

type labor demand shocks to commuting destinations from each residential location as the fun-

damental source of variation in housing demand shocks, which feed through the commute time

matrix to generate exogenous variation in house price growth across residential locations. These

labor demand shocks are built using 1990 industry shares in commuting destinations interacted

with national industry-specific employment growth rates after year 2000.

One practical challenge is in how to sensibly aggregate these labor demand shocks across all

commuting destinations from each residential tract. To do this, we follow Tsivanidis (2018) and

nest our reduced-form estimation problem into an urban spatial equilibrium model in which resi-

dential demand in neighborhood i depends on “resident market access” (RMAi), a coherent mea-

sure of access to employment from tract i. RMAi amounts to the commute time discounted sum

of employment in each commuting destination from location i. Labor demand shocks in each

potential commuting destination are used to generate a simulated counterpart to the change in

RMAi that, conditional on appropriate controls, is purged of shocks to tract housing productivity

or changes in other unobserved tract level housing supply factors.

Beyond contributing to the housing production function and supply elasticity literatures, our

micro scale estimates provide a supply-side explanation for the recent finding that there was more

price growth in the center of metro areas in the 2002-2007 housing boom (Glaeser et al., 2012;

Genesove & Han, 2013). In addition, knowledge of neigborhood level housing supply elasticities

is central for not only understanding patterns of neighborhood changes (Cutler, Glaeser, & Vigdor,

1999) but also evaluating welfare consequences of affordable housing policies(Favilukis, Mabille,

& Van Nieuwerburgh, 2019; Davis, Gregory, & Hartley, 2019). Furthermore, a burgeoning litera-

ture examines policies and phenomena that only directly impact a few neighborhoods in cities in

the context of general equilibrium urban models (Calabrese, Epple, & Romano, 2011). These stud-

ies typically calibrate micro elasticities to macro estimates from the literature. Our evidence shows
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that this choice can lead to misleading conclusions about incidence. We thus hope that our supply

elasticity estimates are useful for improving quantitative evaluation of various policies that are

targeted to particular neighborhoods.

As an example application, we explore the welfare consequences of the Opportunity Zone

(OZ) provisions of the 2017 Tax Cuts and Jobs Act. The OZ program targets poorer neighbor-

hoods with reduced capital gains taxes on new real estate investments. The resulting lower cost of

capital associated with new construction in these neighborhoods is reflected in reduced marginal

costs and downward shifts in neighborhood supply functions. OZ neighborhoods happen to have

below average local supply elasticities for their metro areas. As a result, we show that the potential

gains in consumer surplus from implementing the same tax incentive in non-OZ neighborhoods

is greater by about $4 million per tract on average. Moreover, these OZ tract gains are overstated

by 30% if calculated using regional rather than tract level supply elasticity estimates.

2 Data

We assemble a data set that brings together information from a number of different sources. Using

the Zillow’s Assessor and Real Estate Database (ZTRAX) data files, we build various housing price

and quantity measures, supplemented with aggregate census and American Community Survey

(ACS) data from 1990, 2000 and 2008-12. We measure local labor demand conditions using the

place of work and journey to work tabulations in the 1990 and 2000 U.S. Censuses of Population

and the 2006 and 2010 LODES data plus census tract aggregate data from 1990-2010. Finally,

we use remote sensing information on land cover in 2001 to measure baseline tract development

intensity and topography and that from 2001-2011 to measure changes in developed land. All

data are keyed to 2000 definition census tracts, covering 63,897 tracts in 306 metro areas (with

some overlap across metros). Below we describe in more detail how we process each data source.

2.1 Housing Prices

Our primary source for housing data is the Zillow’s Assessor and Real Estate Database (ZTRAX)

(Zillow, 2017). These come in the form of files for transactions, most recent assessments before

2017 and prior assessments. These data cover more of the U.S. over time from 2000 to 2010, go-
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ing from coverage of at least part of 267 metro areas and about two-thirds of sample tracts to

three-quarters by 2010. Because of incomplete coverage, particularly in year 2000, we supplement

Zillow data with decennial Census data, as explained in further detail below.

Transactions information is transcribed from local Recorders of Deeds and includes the sale

price, location and some property attributes. To fill out property attributes, we merge in the most

recent assessment data. We primarily use the resulting data set to construct price indexes at the

census tract level. For the purpose of building home price indexes, we only use arm’s length trans-

actions for resale or new construction. This excludes deed transfers involving non-transactions

such as foreclosure by banks or quitclaim deeds. We include all residential units, including single

family houses, townhouses and condominiums. We only consider homes that are bought by indi-

vidual buyers and do not examine institutional buyers. We always exclude homes that sell more

than 9 times over our sample period and tract-year combinations with fewer than 10 sales.1

A well-known challenge for constructing home price indexes is that homes are heterogeneous

in observed and unobserved attributes. The goal of the indices is to hold quality constant, elim-

inating all price variation due to differences in attributes. Leveraging the richness of assessment

data on home characteristics, we use census tract-region-year fixed effects aHI
irt from the following

hedonic regression to build our Hedonic Index (HI).

ln Phirtm = aHI
irt + ρHI

m + XhirtmβHI + eHI
hirtm

Here, h indexes homes in census tract i, region r, year t and month m. Xhirtm includes a rich set

of characteristics (including unit type, rooms, bedrooms, kitchens, bathrooms, heating and AC,

elevator, fireplace, water, sewer, roof type, age and floorspace). Month of sale fixed effects ρHI
m

flexibly account for seasonality in market conditions.

As noted in Section 2.6, we exclude tracts for which Zillow data do not have complete or

accurate coverage. To fill out some measure of house prices for these tracts and to facilitate the

pre-trends analysis that requires house prices for 1990-2000, we also build a lower quality hedonic

price index using self-reported data from the 1990 and 2000 Censuses of Housing and the 2008-

2012 ACS aggregated to the census tract level. These are tract residuals aC
irt from the following

1This second restriction is intended to eliminate tract-years with selected coverage in the ZTRAX data. It drops 10%

of tract-year observations in 2000 and 13% in 2010, with a minor impact on results.
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cross-sectional regressions estimated separately for 1990, 2000 and 2010:

ln PC
irt = XC

irtβ
C
t + aC

irt.

Here, PC
irt is the average self-reported value of owner-occupied homes in the tract and included

in XC
irt are fractions of the tract’s owner-occupied units in various building types, with various

numbers of bedrooms, and of various vintages. While it is of lower quality, this index covers all

residential census tracts in the U.S.

Hedonic indices do not account for unobserved heterogeneity in quality across homes. To

account for this, we also use the ZTRAX data set to build a repeat sales index (RS) at the tract-year

level. For this index, we exclude any sales fewer than 180 days after the prior sale. Inclusion of

home fixed effects αRS
hir in the following regression purges individual home heterogeneity that is

fixed over time. Tract-year fixed effects aRS
irt from this regression form our repeat sales index:

ln Phirtm = aRS
irt + ρRS

m + αRS
hir + eRS

hirtm.

After homes are renovated, we treat them as new homes for the purpose of constructing this index.

We recognize that this index may suffer from a less representative sample than the hedonic index

and incorporate unwanted capitalization of unobserved home improvements. Nevertheless, it

provides a nice complement to the hedonic price index. For further robustness, we compared the

Zillow repeat sales index with the tract level Federal Housing Financing Agency (FHFA) repeat

sales price index. The correlation between the growth rates of the two indices is about 0.75. The

FHFA price index only covers single family house transactions involving conforming and conven-

tional mortgages. For this reason, we focus on Zillow-based measures as they have more complete

geographic coverage and include condominium sales.

The top block in Table 1 presents summary statistics about changes in these three home price

indexes for the primary estimation sample used in the empirical work. The Zillow hedonic price

index growth is 0.62 on average across tracts relative to 0.64 for repeat sales index growth during

the 2000-2006 period. For 2000-2010, average growth rates are 0.26 for each, reflecting the 2007-

2008 housing market crash. Correlations between the two Zillow indexes is 0.92 for the 2000-2010

period but the correlation with the growth in the Census price index is only about 0.45 for both

Zillow based indexes.
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2.2 Housing Quantities

We construct five measures of housing quantity changes to cover different aspects of supply re-

sponses, ranging from changes in housing stocks, changes in developed land, changes in floorspace,

total new construction, new development and redevelopment. As most of the existing literature

on housing supply focuses on units in the housing stock, we begin with this measure. Since the

Zillow data have incomplete coverage at the beginning of the sample, most of our stock measures

rely on 2000 census data for the base year. To gain a conceptually consistent measure of housing

supply, we further explicitly measure floorspace, new construction and redevelopment, which the

detailed Zillow assessment data facilitate.

To organize our classification of stock measures, we begin by noting that the total residential

floorspace in census tract i, Si, is the amount of developed land Li times the average number of

housing units per developed parcel Hi/Li times the average floorspace per housing unit Si/Hi.

Differentiating, the growth rate in floorspace over time can be written as follows:

d ln Si = d ln Li + d︸ ︷︷ ︸
d ln Hi

ln
Hi

Li
+ d ln

Si

Hi︸ ︷︷ ︸
d ln Ai

(1)

The first two terms on the right hand side of equation (1) also add up to changes in housing units,

d ln Hi, which can be decomposed as dHR
i

Hi
+

dHU
i

Hi
+

dHT
i

Hi
, where dHR

i refers to new units developed

on already-developed land (redevelopment), dHU
i refers to new units developed on land that

has not been developed before (new development), and dHT
i refers to the combination of full

depreciation and teardowns and is always negative. In addition, the second and third terms on

the right hand side of equation (1) add up to changes in housing services per parcel, d ln Ai, where

Ai =
Si
Li

is measured as floorspace per parcel.

2.2.1 Housing Units and Total New Construction

The simplest unit quantity growth measures ( dHi
Hi

) are the 1990-2000 and 2000-2010 growth rates in

tract occupied housing units reported in the 100% count Decennial Census data. We use occupied

units instead of all units to be consistent with Saiz (2010) and because vacant units may be under-

reported or not habitable. While it has the best neighborhood coverage, this measure is not an

ideal new supply measure as it includes teardowns and depreciation.
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We separate out new construction dHR
i +dHU

i
Hi

using information on building age in the ACS and

ZTRAX data sets. In the 2008-2012 ACS tract aggregates, we observe the number of units in the

stock built between 2000 and 2009. Following the ZTRAX historical assessment data forward, we

record the earliest year built after 2000 for every housing unit in the ZTRAX data set.2 Because of

incomplete ZTRAX coverage in the earlier part of our sample and to be consistent across measures,

we use the occupied housing stock reported in the 2000 census as a base for both measures. As

the ACS is based on a 5% sample of occupied units while ZTRAX in principle covers the universe

of new construction, the ZTRAX measure is more accurate.

Summary statistics for these three measures are presented in the second block of Table 1. Here

we see that for the 2000-2009 calendar years, the average construction rates of new units across

tracts in our sample, measured using both the ACS and Zillow data, are very close at about 11

percent growth over the census-defined base in 2000. The average census growth number for the

same period, which incorporates teardowns, is 8 percent. Pairwise correlations between these

three measures are all over 0.91.

2.2.2 Redevelopment New Construction Units

Redevelopment (dHR
i ) is an important component of housing supply, as it may have a different

cost structure than new construction on undeveloped land. Moreover, in cities where building

density is already high, builders can only increase housing supply through redevelopment. Urban

redevelopment can take many forms, including teardowns and infills, which became widespread

during the housing boom of the 2000s. At the peak, the number of demolitions and teardowns

in the Chicago metropolitan area approached 40% of sales in 2005 (McMillen & O’Sullivan, 2013).

In New York City, annual teardown activity increased almost eight-fold from 1994 to 2004 and

peaked in 2005 (Been, Ellen, & Gedal, 2009).

Lacking data on demolition permits or infill construction, we quantify the units built through

redevelopment by imputing the number of units built on already developed land in the calendar

years 2000 through 2009 as follows. We assume that each tract’s stock of units reported in the 2010

2Some rental buildings only report total square footage and do not break out the number of units. In these cases, we

impute the number of rental units using the average square footage of units in other rental and condominium buildings

of similar size in the tract.
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census is uniformly spatially distributed across the tract’s developed area as measured using 2011

satellite land cover information described below. We subtract off the number of ACS reported new

construction units 2000-2009 that is imputed to be on newly developed land using this assumption

from 2010/2011 about the spatial distribution of housing units in each tract. We infer that the

remainder of 2000-2009 new construction is from redevelopment. If this remainder is negative, we

assign 0 units to redevelopment. Comparing the new units on already developed land with total

new construction units as shown in Table 1, 40% of new construction in an average tract in our

sample is redevelopment.

2.2.3 Floorspace

In much of the housing production literature, including the model we develop below, homes are

viewed as differing only in the efficiency units of homogenous housing services they provide. If

recently built housing units are larger than those built in the early 2000s or some existing housing

units have been renovated, using either the difference in stocks or new construction would under-

estimate the true growth in housing supply, as highlighted in equation (1). To account for changes

in housing quality, we first use Zillow assessment data to construct changes in tract floorspace

as a way to measure the full housing supply response. We also construct a broader quality-

adjusted measure of changes in housing services that incorporates all observed housing attributes,

including square footage and the number of different types of rooms, with corresponding hedonic

weights. The two measures are highly correlated and generate almost identical empirical results

throughout our analysis. Given the possible endogeneity issues associated with constructing the

hedonic weights, we focus on the floorspace measure in the analysis hereafter, as it is a more

straightforward measure of housing services.

2.3 Satellite Data

We use remote sensing information to measure tract level topography and land development in-

tensity. Land cover information is used to help determine whether new housing is built on previ-

ously undeveloped land.

We use three remote sensing data sets for land cover and topography. First, the “Scientific In-

vestigations Map 3085” is derived from the US Geological Survey’s National Elevation Database.
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This data set uses raster information on slope and elevation range for all 30X30 meter land pixels

within a 0.56 km radius (1 sq. km) of each pixel to classify it into one of nine categories that de-

scribe how flat or hilly the surrounding area is. After much experimentation with various options,

we focus on the fraction of land area surrounded by “flat plains” as our main topographic mea-

sure in the empirical work. Flat plains are defined to have a slope of less than 8% in more than

half of these nearby pixels and an elevation range of less than 15 meters in this 1 km sq region.

On average in our estimation sample defined below, 40% of tract land area is flat plains. We also

independently extract elevation range within each tract directly from the US Geological Survey

National Elevation 1/9-1/3-1-2 arc second Database.

Development costs not only depend on topographical conditions but also the initial developed

state. We construct tract developed fraction from the National Land Cover Database (NLCDB) for

2001 and 2011. For each 30X30 meter cell, the NLCDB provides one of 4 categories of development

(0-19%, 20-49%, 50-79%, 80-100%). We construct the square meters of land in each tract by density

of development and aggregate, assigning category medians, to impute average developed fraction

for the land area of each census tract. We denote d ln Li as the growth rate of tract land that has

ever been developed, both as measured and conceptually in the model developed below. The

average tract in our estimation sample experienced 8 percent 2001-2011 growth in developed land

off of a base of 33% developed in 2001.

We aggregate the resulting tract level data to construct various land unavailability measures

for each metro area. To be consistent with Saiz (2010), we calculate the fraction of area within 50

km of the CBD of each region that is undevelopable due to a steep slope (e.g. mountains), water

or wetlands (e.g. oceans, lakes, etc), and that is developed. We also build variants of these two

measures instead aggregating to the metro area level and within 50% or 100% radii from the CBD

to the furthest tract in each metro area. As these measures are highly correlated, our results are

not sensitive to the choice of aggregation. Lutz and Sand (2019) construct similar measures of land

unavailability for metro areas using some of the same data sources.

Figure 1 Panel A shows kernel densities of fraction flat and fraction developed. Both are bi-

modal. Fraction flat has modes near the extremes of 0 and 1 while fraction developed is a smoother

distribution with modes near 0 and 0.4. Figure 1 Panel B shows that both decline on average with

CBD distance, though fraction developed declines more rapidly.
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2.4 WRLURI and FAR

The Wharton Residential Land Use Regulatory Index (WRLURI) is constructed from a battery of

survey questions sent to a weighted random sample of municipalities nationwide in the US in

year 2005. The index is expressed in population-weighted standard deviation units. While larger

urban municipalities were sampled with higher probability, a large number of smaller suburban

municipalities were also included in the sample. 261 of the 306 regions in our sample have at least

one municipality surveyed. However, the municipality of the CBD is sampled in only 164 of our

sample regions. Overall, our data includes 2,373 municipalities and 30,526 tracts with WRLURI

information.

We also incorporate separately collected information on Floor Area Ratio (FAR) restrictions

on residential development from the municipalities of Atlanta, Boston, Chicago, Denver, Los An-

geles, New York, San Francisco, and Washington.3 For each residential land parcel, local zoning

maps provide the residential FAR. We use the average of these within each census tract, weighted

by parcel area.

Figure 1 Panel B shows that both FAR and the Wharton Index fall with CBD distance out to

about 15% of the way to the urban fringe. As the Wharton Index is measured at the municipality

level, its decline within this range of CBD distance is fully due to between region variation from

increased representation of less dense central cities, which are typically less heavily regulated. The

Wharton Index rises steeply beyond that such that land use in municipalities 30% of the way to

the urban fringe is on average more heavily regulated than at CBDs. Beyond 30%, we have no

FAR data and we do not have sufficient Wharton Index coverage to precisely measure regulation.

2.5 Population, Employment and Commutes

The Census Transportation Planning Package (CTPP) reports tabulations of 1990 and 2000 census

data by residential location, work location and commuting flow. The 1990 CTPP geography deter-

mines our study regions. The 1990 CTPP assigns microgeographic units the size of census tracts

or smaller to “regions”, which roughly correspond to metropolitan areas. These regions can over-

lap. Commuting flows and times are reported for pairs of census tracts, traffic analysis zones or

block groups within each region only. Employment by place of work, sex and 18 industry groups

3Most of these data were generously provided by Ruchi Singh (Brueckner & Singh, 2020).
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are reported for these same geographic units. For Connecticut and New Jersey, which are fully

contained in one large 1990 CTPP region each, we develop new regions that each have a 25 km

radius around each CBD in each state. We map 1990 CTPP geography to 2000 definition census

tracts by overlaying their digital maps and using land area as allocation weights. The 2000 CTPP

is more spatially comprehensive and thus can be restricted to cover only 1990 region definition

geography. The result is a total of 63,896 2000-definition census tracts (comprising 50,410 unique

tracts) in 306 regions.

For most regions, central business district (CBD) locations are taken as the centroid of the set

of census tracts reported as being in the CBD in the 1982 Economic Census. Remaining CBD

assignment is done by eyeballing a location that is near city hall and the most historical bank

branches in the region’s largest city.

Empirical implementation requires information on the commute time between each pair of

census tracts in each region. Because they are based on only a sample and flows of fewer than

5 sampled workers are suppressed, commutes are not observed between about one-half of tract

pairs in 1990 and two-thirds of tract pairs in 2000. To fill in the rest, we develop a forecasting model

based on tract relative locations. In particular, we impute origin-destination commute times using

out of sample predictions from a regression of log travel time on region fixed effects, log travel

distance, log CBD distance of workplace and log CBD distance of residence. See Baum-Snow,

Hartley, and Lee (2019) for details.

For 2006 and 2010, we use the LEHD origin destination employment statistics (LODES) data

to measure employment by place of work. As this data set does not have commute times, we

maintain year 2000 commute times for these later years.

We take census tract aggregates for 1970-2010 from the Neighborhood Change Database sup-

plemented with some Summary Tape File 4 variables from 1980. We use these variables to measure

aggregate outcomes and to control for pre-treatment trends in observables.

2.6 Estimation Sample

Our analysis requires reliable information on housing quantities. To this end, we only include

census tracts with Zillow unit counts that are close to 2010 100% census counts. In particular,

we exclude all tracts from the estimation sample for which our 2010 Zillow unit stock is more
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than 20% above or below the occupied housing stock reported in the 2010 census. In addition,

we exclude tracts in non-disclosure states for which Zillow reports they have incomplete cover-

age.4 For these tracts, we are particularly concerned about under-measurement of 2000-2010 new

construction. As a result, our estimation sample is cut from 50,410 tracts (63,896 observations) in

306 partially overlapping regions to 19,985 tracts (25,361 observations) in 170 regions. Primary

estimation sample sizes for specific variables are reported in Table 1.

For building instruments and for structural estimation of the model, we need information on

labor market opportunities that are relevant to each census tract in the estimation sample. Because

the CTPP and LODES fully cover our sample area, these data sets do not introduce any sample

constraints.

3 Conceptual Framework

The main object of our analysis is to empirically characterize how housing supply elasticities dif-

fer across neighborhoods and regions. While we use the decomposition in (1), developed further

below, to study different components of supply, we intentionally impose as little structure as pos-

sible on the form of the housing supply function.

As such, we focus on recovering estimates of γir in the following reduced form expression. Qs
ir

denotes any of the quantity measures listed in (1) in tract i of metropolitan area r and Pir is the

observed price per unit of housing services. To accommodate ad-valorem taxes, we can think of

the price developers receive per unit of housing services sold as Pir(1− tr). Region fixed effects

θr thus capture potential tax wedges and other region-specific factors that influence construction

costs.

ln Qs
ir = θr + γir ln Pir + uir (2)

uir includes within-metro area supply shifters, both observed and unobserved. We allow γir to

depend on tract i’s observed heterogeneity, including initial building density, geographic features

and distance to the central business district in metropolitan area r. Because of the durability and

immobility of housing, (2) is likely to hold with a greater γir for price growth than for price de-

clines (Glaeser & Gyourko, 2005). For this reason, despite using price and quantity information

4These states are Alaska, Idaho, Kansas, Louisiana, Mississippi, Missouri, Montana, New Mexico, North Dakota,

Texas, Utah, and Wyoming.
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for 2000-2010, we rely on the 2000-2006 period for demand shocks. During this time, price growth

was positive in over 98 percent of the tracts in our sample, more so than for any other time period

in our data.

In this section, we first sketch a simple model of neighborhood housing supply. While styl-

ized, the model delivers a natural decomposition of the residential floorspace supply elasticity

into intensive (floorspace per parcel) and extensive (parcel development) margins. It also delivers

a theoretical basis for the unit supply elasticities we measure in the empirical work. Finally, it

provides rough calibrated quantification of the intensive margin component and microfounds our

empirical specifications. We then incorporate the housing supply function into an urban spatial

equilibrium model which links neighborhood housing and labor markets in an urban area. This

part of the model provides theoretical support for the instruments we use to pin down consistent

estimates of parameters used in the construction of γir and helps guide our opportunity zone ap-

plication in Section 6. Altogether, our conceptualization of the data generating process serves as a

microfoundation that guides both our empirical strategy for estimating housing supply functions

and the interpretation of empirical findings.

3.1 A Theory of Neighborhood Housing Supply

We analyze a static environment in which competitive developers with access to the same technol-

ogy produce housing on some land parcels in each neighborhood. As the model is static, it is most

natural to view it as describing comparisons of housing supply responses across different neigh-

borhoods that are ex-ante identical but experience different exogenous increases in the price of

housing services. These are the treatment effects that the empirical work is set up to measure. The

key object delivered by the model relevant for the empirical work is a description of relationships

between relative housing stocks and relative prices across these ex-ante identical neighborhoods.

We analyze a representative developer. The developer only builds on land parcels with fixed

development costs that are sufficiently low such that the variable profit minus fixed development

cost is weakly positive. Each parcel’s land value is the variable profit net of the fixed development

cost. Conditional on development, the amount of floorspace supplied on each parcel in neighbor-

hood i is Ai. Ai thus represents the intensity of development on any given lot in neighborhood

i, incorporating both floorspace per housing unit and units per parcel. It is chosen based on tract
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housing productivity, parcel size and demand conditions captured by Pi. The price per unit of

housing services Pi is the same for all parcels in neighborhood i.

Developers combine land and capital to produce housing services. Each building lot l in neigh-

borhood i has the fixed lot size Mi, faces the same variable cost function Ci(Ai) and has the lot-

specific fixed development cost gil . The fixed development lot size assumption reflects land as-

sembly frictions that are likely to bind over the 5-10 year time horizon that is the focus of our

empirical analysis (Brooks & Lutz, 2016). The fixed cost gil captures development fees and per-

mitting costs plus land preparation costs. Each tract has its own distribution of fixed development

costs Fi(x).

A representative developer’s profit associated with building on parcel l in neighborhood i is

pro f itil = Pi Ai(Pi)− gil − Ci(Ai)− pil ,

where pil is the endogenous parcel acquisition price. Imposing 0 profits and perfect competition

(marginal cost pricing), we have

pil = Ci(Ai(Pi))(
d ln Ci(Ai(Pi))

d ln Ai
− 1)− gil .

This is the bid-rent function for lot l in neighborhood i. Consistent with a fixed parcel size and

Cobb-Douglas housing production in land and capital, the variable cost function exhibits the prop-

erty that d ln Ci(Ai(Pi))
d ln A > 1. As such, the first term reflects the intuition that more development

implies greater variable profits, which get capitalized into a higher parcel price. The second term

reflects capitalization of the fixed development cost into the parcel price. Henceforth, consistent

with Cobb-Douglas production, we assume that d ln C
d ln A − 1 = φ > 0. Normalizing the oppor-

tunity cost per unit of land to 0, this means that the fraction of land developed in each tract is

Fi[φCi(Ai(Pi))]. All derivations are in the Appendix.

The stock of developed land in tract i, Li(Pi), is MiFi(φCi[Ai(Pi)]), where Mi is tract i’s total

land endowment. Differentiating the developed land supply function yields:

γland
i ≡ d ln Li(Pi)

d ln Pi
=

fi(φCi[Ai(Pi)])

Fi(φC[Ai(Pi)])

d ln Ai(Pi)

d ln Pi
φPi Ai(Pi). (3)

Expression (3) highlights that tracts with a greater density of parcels available for developing at

the fixed cost that equals marginal variable profit, represented by a higher fi(φCi[Ai(Pi)]), exhibit
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more elastic land supply. Land supply is a component of floorspace and unit supply, which we

turn to now.

Starting with the tract-level aggregate housing services supply function ln Si(Pi) = ln Ai(Pi) +

ln Li(Pi), it follows that

γ
space
i ≡ d ln Si(Pi)

d ln Pi
=

d ln Ai(Pi)

d ln Pi
+

fi(φCi[Ai(Pi)])

Fi(φC[Ai(Pi)])

d ln Ai(Pi)

d ln Pi
φPi Ai(Pi). (4)

To get a sense of magnitudes and to connect this framework more closely to the empirical work,

we parameterize assuming a Cobb-Douglas production technology with the common land share

α and a tract-specific productivity. The resulting parcel-specific housing services supply function

is Ai(Pi) = ρiP
1−α

α
i .5 We further assume that the fixed cost follows the Frechet distribution, where

Fi(x) = exp(−Γix−λ), with the common dispersion parameter λ > 1 and the tract-specific scale

parameter Γi > 0. With these functional form assumptions, the generalized supply elasticity

expression from (4) becomes

d ln Si

d ln Pi
=

1− α

α︸ ︷︷ ︸
d ln Ai
d ln Pi

+ α−1−λλρ−λ
i P−

λ
α

i Γi︸ ︷︷ ︸
d ln Li
d ln Pi

. (5)

Equation (5) highlights how developers respond to positive demand shocks along both intensive

and extensive margins. The first term captures the intensive margin. As price rises, developers

increase the quantity of housing services supplied per parcel by 1−α
α , where α is the land share in

housing production. With α estimated to be 0.2-0.33 in the literature (Combes et al., 2019), 1−α
α

reflects a floorspace supply elasticity of 2-4 holding the amount of developed land fixed.

The second term relates the extensive margin positively to the scale parameter, Γi, and nega-

tively to the initial price level, Pi. In the Frechet example, fixed cost distributions in tracts with a

higher Γi have higher means and variances and hence a thicker right tail. This implies a higher

density of land available for development at the marginal variable profit and hence higher γland
i ,

which in turn boosts γ
space
i . We expect that tracts with lower initial development density, more

flat land and less stringent regulation are characterized with fixed cost distribution with a higher

scale parameter, Γi, and hence more responsive along the extensive supply margin.6 In addition,

5ρi = ι
α−1

α (1− α)
1−α

α κ
1
α

i Mi where ι is the cost of capital and κi is tract housing productivity.
6In the empirical work we recognize that Γi and ρi may additionally depend on unobserved tract characteristics. We

also recognize that these same attributes may be supply shifters.
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in the Frechet example a higher initial price in tract i implies a thinner right tail of the fixed cost

distribution and hence less land available for development at the marginal fixed cost, which in

turn causes the extensive margin to be less responsive.

We now turn to the tract-level unit supply function ln Hi(Pi) = ln(Hi/Li)(Pi) + ln Li(Pi). It

follows that

γunit
i ≡ d ln Hi

d ln Pi
=

d ln(Hi/Li)

d ln Pi
+

fi(φCi[Ai(Pi)])

Fi(φC[Ai(Pi)])

d ln Ai(Pi)

d ln Pi
φPi Ai.

Conditional on development, we assume that units per parcel in all areas of a tract (Hi/Li) is

identical. Moreover, the nature of demand shocks are such that the positive intensive margin

response dlnAi
dlnPi

is split into two positive components.7 As a result, we predict that γunit
i > γland

i and

that tract level characteristics affect unit supply elasticities in the same direction as land supply

elasticities.

One particular tract characteristics is floor-area-ratio (FAR) restriction that constrain develop-

ers from building beyond some maximum intensity Ai. A binding FAR constrains the intensive

margin supply response to 0. As a result, the tract supply elasticity comes from the extensive

margin only.8

γ
space,FAR
i = γunit,FAR

i = γland,FAR
i =

fi(Pi Ai − Ci(Ai))

Fi(Pi Ai − Ci(Ai))
Ai. (6)

Equation (6) shows two forces through which a less binding FAR (increase in Ai) affects the supply

elasticity. First, the mechanical effect of being allowed to build more increases supply elasticity

by making more parcels viable for development with a marginal price increase. Second, a higher

Ai attracts more development on available parcels, thereby changing the supply of developable

parcels at the marginal fixed cost Pi Ai − Ci(Ai). This could dampen or increase supply elasticity

depending on the form of the fixed cost distribution fi(x). The net effect of a relaxation of a FAR

on supply elasticity is thus an empirical question, which we examine in Section 5.2.

Urban growth takes the form of both development and redevelopment. Our supply model

can be further extended to incorporate redevelopment. To see this, consider an environment in

7The equilibrium split of (Ai ≡ Si/Li) into floorspace per units (Si/Hi) and units per parcel (Hi/Li) depends on

the composition of housing demand (families vs. single people for example), which neither our data nor identification

strategy are well suited to handle. However, we note that single family home construction, or 1 unit per parcel, makes

up over 90 percent of 2000-2010 new construction units in our sample area.
8See Appendix A.6 for the derivation.
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which f L
i (x) is the density of fixed development costs across all parcels in tract i as if they had

no prior development and r is an additional fixed redevelopment cost. Then, f R
i (x) is the left

tail of the f L
i (x) distribution up to φCi but shifted by r to reflect the additional redevelopment

cost; f U
i (x) is its right tail at fixed costs above φCi only and rescaled to integrate to 1. Both have

support between fixed costs φCi and φCi + r. With this extension, the fixed cost distribution Fi(x)

is decomposed into Fi(x) =
MR

i
Mi

FR
i (x) + MU

i
Mi

FU
i (x) = FL

i (x − r)1(x ≤ φCi) + FL
i (x)1(x ≥ φCi),

where MR
i is the mass of previously developed land parcels in tract i and MU

i is the analogous

object for undeveloped parcels. A corresponding version of equation (3) is then:

γland
i ≡ d ln Li(Pi)

d ln Pi
= (

MR
i f R

i (φCi)

MR′
i

+
MU

i f U
i (φCi)

MR′
i

)
d ln Ai(Pi)

d ln Pi
φPi Ai(Pi), (7)

where MR′
i = MR

i FR
i (φCi) + MU

i FU
i (φCi) is the amount of land that is newly developed. Equa-

tion (7) decomposes the land supply response into land redevelopment and new construction on

undeveloped land respectively.

Figure A1 plots f L(x), f R(x) and f U(x) for an example tract. A few implications follow. First,

as Pi rises, marginal land parcels are developed left to right in the region of overlapping support

of the f R(x) and f U(x) distributions. Developers in neighborhoods with greater price growth

carry out both additional redevelopment and additional development of previously undeveloped

land, relative to developers in neighborhoods with smaller price growth, to supply new housing.

Second, the relative magnitudes of the land redevelopment versus new land development elastic-

ities depend on the density of the fixed cost distribution f L
i (x) at φCi and φCi + r and the relative

amounts of previously undeveloped versus developed land in the tract. If a large fraction of tract

land was previously developed, that will tend to boost the redevelopment elasticity as it gives

developers greater opportunity to find parcels with relatively low fixed costs. Third, given that

f R
i (φCi) and f U

i (φCi) both depend on parameters that govern the FL(x) distribution, tract charac-

teristics affect the redevelopment supply elasticity in the same way as the extensive margin unit

supply elasticity in equation (5).9

9Appendix A.5 formally lays out unit and floorspace supply elasticities under redevelopment.
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3.2 Housing Demand

We incorporate housing supply conditions that are allowed to differ across locations within cities

into a version of the quantitative urban model developed by Ahlfeldt, Redding, Sturm, and Wolf

(2015) and extended by Tsivanidis (2018). While tracing out housing supply functions is ultimately

about estimating reduced form impacts of housing demand shocks on housing quantities and

prices, this part of the theory is helpful in operationalizing this goal in three ways.

First, the model shows how to leverage variation across space within cities in local labor de-

mand shocks to isolate exogenous variation in housing demand shocks across census tracts. The

model structure facilitates recovery of causal linkages from labor demand shocks to housing de-

mand shocks, as filtered through the commuting time matrix. We show how housing demand

conditions in each census tract i can be summarized through “Resident Market Access” RMAi,

which is the sum of commute time discounted skill prices available to residents of tract i. This

object can be readily calculated with available data on the numbers of workers and residents in

each tract. Shocks to skill prices in commuting destinations are reflected as shocks to RMAi.

Second, the model makes clear the conditions required for census tract level “Bartik” shocks

to represent a valid source of econometric identification. These shocks are calculated by predict-

ing 2000 to 2006 tract level growth in employment by industry using 1990 tract level employment

shares by industry with national industry specific employment growth outside of the metro area

in question. Originally proposed by Bartik (1989, 1991), this source of variation has been used

at the metro area level in Saiz (2010), Notowidgdo (2013) and Diamond (2015) among many oth-

ers. This and Baum-Snow et al. (2019) are among the first papers to use this source of variation

for identification at the sub-metro level of geography. To help us do this in a sensible way, we

explicitly introduce industries k into the model.

Finally, the model delivers enough structure to aggregate neighborhood housing supply func-

tions to the metro area given an array of shocks to neighborhood fundamentals and to perform

welfare analysis of place based policies, as we do in Section 6.

3.2.1 Setup

While our main empirical work uses data for over 150 metropolitan areas, our empirical focus is

on within-metro area variation in housing supply elasticities. As such, our model is of a single

19



metro area.

The model features a continuum of ex-ante identical workers indexed by ω who choose resi-

dential tract i, work tract j and industry of work k within the metro area. They receive productiv-

ity shocks zijkω over commute origin-destination and industry triplets and preference shocks viω

over residential locations. The preference shocks are revealed first, leading agents to first choose

residential locations anticipating the quality of employment opportunities nearby but before pro-

ductivity shocks are revealed. Productivity shocks are then revealed and agents choose work

locations second. In practice, the shocks primarily allow the model to generate enough variation

in tract populations, home prices and employment to rationalize the data.10

The indirect utility person ω receives from living in tract i, commuting to tract j and working

in industry k is

vijkω =
viωBizijkωwjk

P1−β
i eκτij

, (8)

where Bi is a local amenity, wjk is the price of a unit of skill in commuting destination j and

industry k, Pi is the price of one unit of housing services in i and κτij is the fraction of time spent

commuting for those living in i and working in j. In the data, we observe the price Pi in year 2000

and beyond and the commuting time τij in 1990 and 2000. The productivity shock zijω is drawn

from the Frechet distribution with shape parameter ε.

Fz(zijkω) = e−z−ε
ijkω , ε > 1 (9)

Following Tsivanidis (2018) and Couture et al. (2019), we introduce a nested preference shock

over residential locations viω. This shock is also distributed Frechet but with shape parameters

η and ψ. This nested structure allows individuals to have different elasticities of substitution in

demand between neighborhoods within versus between municipalities, where municipalities are

indexed by m and i(m) refers to neighborhood i in municipality m.

Fv(viω) = exp[−∑
m
[∑
i(m)

v−η
iω ]−

ψ
η ], ψ > 1, η > 1 (10)

Incorporation of this second shock allows the model to generate situations in which people would

choose to reside in tracts with lower expected utilities as calculated based on Bizijkωwjk

P1−β
i eκτij

only. As a

10The sequencing of shock revelation is for analytical convenience. As our main goal is only to provide enough

structure to show how to use Bartik shocks in commuting destinations to generate variation in housing demand in

residential locations, this choice is not central for our analysis.
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practical matter, it also delivers a convenient expression for mean income net of commuting cost

in each tract, as is derived below. If the distribution functions for the two shocks are identical and

η = ψ = ε, the utility shock becomes redundant and this model reduces to one similar to that in

Ahlfeldt et al. (2015).

3.2.2 Resident Market Access

Solving the model backwards, conditional on living in residential location i the probability that

work location j provides the highest utility is

πij|i =
∑k
[
wjke−κτij

]ε

∑k ∑j′
[
wj′ke−κτij′

]ε ≡
∑k
[
wjke−κτij

]ε

RMAi
. (11)

RMAi is a convenient summary measure of the access to employment opportunities from residen-

tial neighborhood i. In particular, many objects in the model are constant elasticity in RMAi and

it can be readily calculated with available data. Derivations are in the appendix.

Before the productivity shock is revealed, the expected income (wage net of commuting cost)

yi associated with residing in tract i is

yi = Γ(1− 1
ε
)(RMA)

1
ε
i . (12)

As a result, population supply to tract i is given by

πi = µ[ ∑
i´∈m(i)

(
Bi′P

β−1
i′ RMA

1
ε

i′

)η

]
ψ
η−1

(
BiP

β−1
i RMA

1
ε
i

)η

. (13)

This expression reflects the attractiveness of neighborhood i’s amenities and labor market oppor-

tunities, as balanced against its housing cost. This attractiveness is relative to the attractiveness to

other neighborhoods in the municipality m(i), captured by the object inside the summation.

Equilibrium commute flows, calculated as πij = πij|iπi, follow a standard gravity equation in

commute time τij.

ln πij = ag
i + bg

j − (κε)τij (14)

That is, a regression of log commute probabilities between each origin-destination pair on origin

and destination fixed effects plus commute time τij recovers an estimate of the parameter bundle

κε.
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Labor supply to tract j is given by

Lj = µ ∑
k

[
wε

jk

]
FMAj, (15)

where “Firm Market Access” FMAj is a measure of the access to workers enjoyed by firms in tract

j. Plugging into the definition of RMAi, we have the following system of equations.

FMAj = ∑
i

e−κετij πi

RMAi
(16)

RMAi = ∑
j

e−κετij Lj

FMAj
(17)

Using data on employment Lj, residents πi, the parameter cluster κε and commute times τij,

we can calculate FMAj and RMAi by solving this system. We estimate κε using separate flow-

weighted commuting gravity regressions like (14) with origin and destination fixed effects in 2000

for each metropolitan region.11 Because we do not observe tract-tract commute times after 2000,

we hold commute times constant for later years. We calculate RMAi using (16) and (17) for 2000,

2006 and 2010.

An individual who lives in i and works in j in industry k has housing demand of (1− β)
yi
Pi

from Cobb-Douglas preferences. We assume that all sites in each residential location i are perfect

demand substitutes, justifying the uniform price per unit of housing services Pi. Adding up, the

log aggregate residential floorspace demand in tract i is thus

ln Sd
i = ln ρHD +

1
ε

ln(RMAi) + ln πi − ln Pi. (18)

This object is increasing in RMAi conditional on population πi because greater RMAi is associated

with greater income for tract residents. Conditional on Pi, equilibrium tract residential population

πi is also increasing in RMAi, as seen in (13). Thus, shocks to RMAi result in housing demand

shocks. This is the key insight used for identification in the empirical work.

The reduced form empirical work uses the housing supply equation (2) in tandem with the

housing demand equation formed by substituting (13) into (18). Credible identifying variation in

11Across the 306 regions in our broad sample, the median estimated elasticity of commuting flow with respect to

one-way commuting minutes in 2000 is -0.04, the minimum is -0.11 and the maximum is -0.01. Estimates of εκ are

about twice as large in big cities like New York and Los Angeles than in small cities like Bryan-College Station, TX. This

reflects the fact that households in bigger cities are willing to travel longer to reach work destinations.
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ln Pi must come from a component of RMAi that is cleansed of variation in housing productivities

and lot sizes. Section 4 lays out how we isolate such variation using a simulated version of RMAi

based on Bartik type labor demand shocks in commuting destinations for residents of tract i.

3.2.3 Equilibrium

Combining conditions governing population supply to residential tracts (13), labor supply to work

tracts (15) and imposing housing market clearing yields conditions describing equilibrium tract

population and home prices. Differentiating the population condition over time yields the follow-

ing structural equation.

d ln πi =
γi + 1

γi + 1 + η(1− β)

η

ε
(1− 1− β

γi + 1
)d ln RMAi + vπ

m + uπ
i (19)

This equation incorporates an intuitive positive relationship between growth in employment op-

portunities and tract population. This relationship is stronger if housing supply in tract i is more

elastic and/or if there is less dispersion in idiosyncratic preferences over locations (η is larger). vπ
m

is a municipality fixed effect that captures common population trends in all tracts in municipality

m that come through their correlation in neighborhood choices delivered by the outer nest in pref-

erences over neighborhoods. The error term uπ
i is a function of shocks to amenities and housing

productivity in tract i. We use (19) above as a basis for structural estimation of η, recognizing that

identifying variation in d ln RMAi must be uncorrelated with tract level shocks to amenities and

housing productivity for successful identification.

Details and additional discussion of model equilibrium are in the appendix.

4 Empirical Implementation

Our main estimation equation amounts to the differenced counterpart to the simple tract level

supply equation (2).

∆ ln Qs
ir = θr + Xirδ + γir∆ ln Pir + ρ̃ir (20)

Observations are for tract i in metro region r. To allow for observed heterogeneity in supply

elasticities, we parameterize γir to depend on metro region and tract-specific observables Z1
r and

Z2
ir.

γir = Z1
r γ1 + Z2

irγ2 (21)
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As is detailed in Section 2, these sources of observed heterogeneity are topography, developed

fraction, land use regulation and regulatory burden. Because we do not observe some relevant

factors that may differ by CBD distance, we also include CBD distance interactions in some speci-

fications. As our empirical setting only allows us to recover relationships between observed tract

attributes and supply elasticities, interaction coefficients also likely incorporate influences of un-

observed factors. For example, if tract fraction developed is correlated with unobserved input

costs, estimates of the coefficient on the interaction between fraction developed and price growth

would in part capture impacts of input cost differences on supply elasticities. This means that

while our estimates are well suited for characterizing existing tract level housing supply elas-

ticities, they are less appropriate for making causal predictions about impacts of changing one

observed attribute holding all else constant. Instead, our empirical implementation is primarily

oriented toward ensuring that variation in price growth across tracts is uncorrelated with unob-

served supply shifters, which allows us to recover information about supply elasticities.

The first two terms in (20) are included for identification reasons. Fundamental to our empir-

ical strategy is inclusion of metro region fixed effects θr. Their inclusion ensures that we compare

different neighborhoods in the same labor market for identification. Robustness checks include

these fixed effects interacted with 2-2.5 km CBD distance rings. In tract characteristics Xir, our

main specification includes lagged demographic attributes, a quadratic in CBD distance, 2001

tract developed fraction and share flat land, and controls for tract-specific labor demand shocks.

Our controls for 1990 and 2000 tract demographic characteristics account for potential influencers

of the tract regulatory environment that may be correlated with the instruments we lay out below.

CBD distance controls hold constant any potential spatial trends in price growth that are related

to costs and are useful given the stronger 2000-2010 labor demand growth in suburban areas. 1990

and 2000 Census rent and price indexes help to account for decadal mean reversion in home price

growth. Controls for developed fraction and topography hold constant obvious potential sources

of housing supply shocks. Finally, 1990 employment and a 2000-2006 tract-specific Bartik labor

demand shock (explained below) ensure that our IV implementation is only using variation from

outside of tract ir for identification.
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4.1 OLS Results

Table 2 presents basic OLS relationships between various measures of post-2000 house quantity

changes and contemporaneous price growth, controlling for metro region fixed effects and the

factors described above. Column (1) is for 2000-2006 and the remaining columns focus on the

2000-2010 period. Housing supply responses are measured as Zillow new construction in columns

(1)-(2), ACS new construction in column (3), changes in census housing stocks in column (4),

changes in developed land in column (5), changes in floorspace in column (6) and redevelopment

in column (7). The first row uses the repeat sales index and the second row uses the hedonic price

index. We see small positive coefficients of up to 0.12 for housing units and only up to 0.21 for

floorspace. Coefficients turn negative if home price growth is measured using the census home

price index (unreported).12

The implausibly low relationships between housing price growth and quantity growth point

to several identification challenges in estimating housing supply. First, neighborhoods that experi-

ence stronger demand shocks may follow with unobserved changes in housing regulation in part

in order to cope with these demand shocks - a classic endogeneity problem discussed extensively

in Davidoff (2016). In particular, if housing development restrictions in the 2000s were loosened

in response to a positive demand shock from the 1990s, the observed OLS relationship would

trace out the demand curve and become negative, as our census based estimates show. Second,

it is possible that positive productivity shocks outside of the construction sector may simultane-

ously boost local housing demand through higher household earnings and reduce housing supply

through higher construction costs. This would further bias the OLS relationship between price and

quantity growth downward. Moreover, our price index measure, while constructed as carefully

as possible, is sure to be a noisy measure of the true price of housing services. Mechanical mean

reversion in decadal house price growth that could reflect classical measurement error would lead

to attenuation bias.
12Ouazad and Ranciere (2019) find similarly small OLS relationships between price growth and quantity growth for

the San Francisco metro region.
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4.2 Instrument Construction

The broad message is the possibility for tract unobservables that predict supply shocks to be cor-

related with demand shocks, thereby generating a downward bias in OLS. A valid identification

strategy must address the classic endogeneity concern of simultaneity in demand and supply

by finding variation in local housing demand shocks across neighborhoods that are uncorrelated

with shocks to local construction costs or housing productivity. To see where this can come from,

consider the following tract level inverse housing demand equation from the model.

ln Pi = ρ̃HD +
ψ/η − 1

1 + η − ηβ
ln ∑

i´∈m(i)

(
Bi′P

β−1
i′ RMA

1
ε

i′

)η

+
1

1 + η − ηβ

1 + η

ε
ln(RMAi)

− 1
1 + η − ηβ

ln Sd
i +

η

1 + η − ηβ
ln Bi

The fact that the housing price in tract i is increasing in RMAi through impacts on housing de-

mand is intuitive. Labor demand conditions relevant to neighborhood i, as summarized in RMAi,

represent a key source of variation in house prices. However, any component of RMAi that is

correlated with tract housing productivity or land parcel size is endogenous to housing supply.

Indeed, through its codetermination with FMAi, RMAi depends structurally on tract population

which itself depends on tract housing productivity and parcel size. As such, we develop instru-

ments that pick out components of d ln RMAi that are likely orthogonal to levels of and shocks to

productivity or other factors that influence local construction costs.

To build instruments, denoted ∆ ln ˜RMAi, we start with (16) and (17) as a basis for calculat-

ing a simulated version of d ln RMAi that plausibly excludes shocks to tract housing productivity

and its correlates. This simulated instrument serves a dual purpose. First it is a reduced form

housing demand shock that drives exogenous variation in tract level house price growth, as rep-

resented above. Second, it is a predictor of the structural object d ln RMAi that is unrelated to tract

level shocks to local amenities or housing productivities. The latter use will allow us to recover

estimates of η for use in the Opportunity Zone application.

Instead of using actual employment in all commuting destinations in these calculations, we

use the employment predicted by national growth rates and initial industry composition in each

tract to solve for ˜RMAi, after evenly scaling up the residential population of each tract to maintain

labor market clearing and allowing us to solve jointly for ˜FMAj. For components of instruments,

we impose 1990 commute times and initial employment shares by industry and use estimates of
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εκ for 2000. We exclude all tracts within 2 km of origins in order to reduce the likelihood that

nearby industry composition could be related to trends in tract productivity.

In particular, we calculate the year 2000 component R̃MA
2000
i of our main instrument as:

R̃MA
2000
i = ∑

j

e−ε̂κτ90
ij 1(disij > 2km)∑

k
L90

jk [E
2000
r′(j)k/E1990

r′(j)k]

F̃MA
2000
j

(22)

F̃MA
2000
j = ∑

i

e−ε̂κτ90
ij 1(disij > 2km)π90

i

[
∑
j

∑
k

L90
jk [E

2000
r′(j)k/E1990

r′(j)k ]

∑
j

L90
j

]
R̃MA

2000
i

(23)

In these expressions, τ90
ij is the reported or forecast commute time from i to j in the 1990 CTPP. ε̂κ

is estimated separately for each region in year 2000 using gravity regressions of log reported com-

mute flows on commute times and origin plus destination fixed effects using 2000 CTPP data.13

Distances from residential to work locations disij are calculated using tract centroids. Employment

in industry k in work location j, L90
jk , is measured from the 1990 CTPP. E2000

r′(j)k and E1990
r′(j)k are the

2000 and 1990 nationwide employment in industry k excluding the region of tract j, respectively.

That is, ∑
k

L90
jk [E

2000
r′(j)k/E1990

r′(j)k] captures the predicted amount of employment that would exist in

tract j if 1990 employment by industry grows at national rates (excluding region r) to year 2000.
∑
j

∑
k

L90
jk [E

2000
r′(j)k/E1990

r′(j)k ]

∑
j

L90
j

is a constant that captures the population growth rate needed to match the ag-

gregate simulated employment in the region in year 2000. The 2006 component of the instrument

is calculated analogously, with E2000
r′(j)k in (22) and (23) replaced by E2006

r′(j)k.

The log difference in R̃MAi for 2000-2006, ∆ ln R̃MAi, is our main instrument for ∆ ln Pi as

measured for both the 2000-2006 and 2000-2010 time periods. We build our instrument for the

2000-2006 period only as this is the time period for which first stage predictive power is strongest.

The 2006-2010 period experienced employment declines that are not well predicted by Bartik type

instruments.
13Details of these estimates are reported in (Baum-Snow et al., 2019).
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4.3 Instrument Validity

The fundamental sources of identifying variation used are tract level “Bartik” (1991) type shocks

in each employment location, written out as follows.

Bartik jr = ∑
k

Emp90
jk

∑k Emp90
jk
[ln E06

r′(j)k − ln E00
r′(j)k] (24)

A prerequisite for the spatial aggregation of such shocks into ∆ ln ˜RMAi to successfully predict

∆ ln RMAi is for the tract level counterparts to successfully predict tract level employment growth.

Table 3 presents evidence to this effect. It presents regressions of 2000-2006 or 2000-2010 em-

ployment growth in tract jr on Bartik jr and controls for 1990 employment level, past demographic

composition of tract residents, CBD distance and metro region fixed effects. This tract level vari-

ation gets aggregated into the identifying variation for the first stage of our main analysis. All

tracts in primary sample regions are included, as they all contribute to measures of R̃MAi in tracts

that contribute data to our main estimation exercises. We control for past employment to isolate

employment growth due only to variation in industry composition. Lagged demographics and

CBD distance controls account for potentially differing labor supply conditions.

Results indicate that we can plausibly isolate labor demand shocks at the tract level. A one

percent higher tract Bartik shock predicts 0.4% greater 2000-2006 tract employment growth and

0.7% greater 2000-2010 tract employment growth. Inclusion of 2-2.5 km CBD distance ring fixed

effects interacted with metro region (columns 2 and 4) does not affect these conclusions.14

One challenge we face when estimating the housing supply equation is that home price growth

is negatively serially correlated across decades. The first two columns of Table 4 show this pattern.

In addition, the positive serial correlation in quantity growth in columns (3) and (4) may reflect

serially correlated demand or supply shocks. Commensurate with our discussion of the OLS

results above, these patterns suggest that there could be local unobserved history that drives both

relative price declines and more construction, inducing a downward bias in an OLS estimation

of housing supply. One legitimate potential concern is that our instrument ∆ ln ˜RMAi may be

correlated with such unobserved history. The results presented in the bottom panel of Table 4 help

allay such concerns by showing relationships between the instrument and pre-treatment trends in

key endogenous variables. Columns (5) and (7) show that ∆ ln ˜RMAi does not predict 1990-2000

14Results are also robust to lagging the demographic tract controls by one additional decade.
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housing price nor quantity growth for our main specification with region fixed effects.15 With

inclusion of region-ring fixed effects, ∆ ln ˜RMAi predicts negative 1990-2000 price growth (column

6) and again no quantity growth (column 8). This evidence for pre-trends shows it is unlikely

that our instrument is correlated with unobserved local history in a way that will bias our supply

elasticity estimates.

Table 5 presents our main first stage estimates. The top two blocks show strong positive re-

lationships between our primary measures of ∆ ln P and ∆ ln R̃MA that are robust to inclusion

of region-ring fixed effects. Slightly smaller first stage coefficients for 2000-2010 relative to 2000-

2006 reflects the fact that the 2007-2010 period mostly saw housing market declines. Results at

the bottom left show that we only have strong first-stage power predicting the census hedonic

index when conditioning on region-ring fixed effects. For this reason, we only use the census in-

dex to account for pre-2000 price trends. Results on the bottom right show relationships between

∆ ln R̃MA and ∆ ln RMA for 2000-2010. It shows significant estimated elasticities of 0.7-0.8 that

are robust to the specification used. According to the model, this is the mechanism through which

∆ ln R̃MA predicts ∆ ln P. Tracts that appear in multiple metro regions are weighted equally to

tracts that appear in just one. Standard errors are adjusted for spatial autocorrelation out to 25 km

using a triangular kernel.16

Overall, we find that changes in simulated resident market access (∆ ln R̃MA) strongly predict

nearby employment growth, home prices, and therefore housing demand growth. Moreover, they

are not correlated with pre-trends in home prices conditional on appropriate controls. These find-

ings provide reassuring support for using ∆ ln R̃MA as a valid instrument in estimating housing

supply elasticities.

15Goldsmith-Pinkham, Sorkin, and Swift (2018) suggest this sort of pre-trend test for evaluating the validity of Bartik

instruments. Their other suggested validity tests use base year industry shares, which are not easily defined in our

setting as they are nonlinearly aggregated across all potential commuting destinations into ∆ ln ˜RMAi.
16As should be expected, we also see positive reduced form relationships between our instrument and 2000-2006 and

2000-2010 Zillow new construction. We spatially correct standard errors to 25 km because errors from our main IV

regressions in Table 6 are significantly correlated to this distance.

29



5 Main Results

5.1 Unified Supply Elasticity Estimates

Table 6 presents unified regressions of housing quantity growth on house price growth using

the same specification as the OLS regressions reported in Table 2. In all regressions, ∆ ln R̃MA

enters as an instrument for ∆ ln P. We show results using just region fixed effects in Panel A and

with region-ring fixed effects in Panel B. We explore seven measures of quantity changes: 2000-

2006 or 2000-2010 Zillow new construction units; 2000-2010 ACS new construction units; 2000-

2010 change in census housing units; 2001-2011 change in developed land; 2001-2011 change in

floorspace; 2000-2010 ACS new construction units through redevelopment only.

Before discussing the estimates, we highlight a few observations. First, unlike small and in-

significant estimates from the OLS regressions, the estimated coefficients in Table 6 are positive

across all specifications with magnitudes that are similar to or slightly smaller than other supply

elasticity estimates from the literature. This is consistent with our narrative that OLS relationships

between quantities and prices in part reflect movement along demand rather than supply curves.

Second, estimated housing units responses to each price change measure are not significantly dif-

ferent. Third, controlling for CBD distance ring fixed effects interacted with metro area (Panel

B) yields similar estimates compared to using metro area fixed effects only. Note that these local

average treatment effects are not necessarily indicative of average supply elasticities across urban

tracts nationwide. Indeed, we show below that average supply elasticities are somewhat larger.

Results in columns (1)-(4) show units supply elasticity estimates of 0.2 to 0.4, depending on

the specification and quantity measure used. Conditional on region-ring fixed effects and based

on the Zillow data, the new construction response during 2000-2010 as reported in column (2)

is larger than that during 2000-2006 as reported in column (1), likely reflecting construction lags

after 2000-2006 price shocks. Focusing on 2000-2010, the estimated elasticity of changes in housing

units from the census (column 4) is not significantly different from the estimated elasticities of new

construction units reported in columns (2)-(3), even though the former incorporates the negative

impacts of teardowns and full depreciation. This indicates that positive demand shocks have little

impact on these two negative margins of response.

In column (5), we report elasticities of observed developed land with respect to home price.
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These are significantly smaller than unit supply elasticities at 0.1-0.2. Recall that γunit
i = γH/L

i +γL
i ,

where γH/L
i is the elasticity of average units per ever developed parcel with respect to price. The

difference between the unit and developed land supply elasticities shows that average units per

ever developed parcel responds positively to price increases. As seen through the lens of the

model, part of this likely occurs through more intensive land redevelopment in tracts with larger

price increases.

As housing units differ in size, the unit supply elasticity alone does not represent the total

housing supply response. To account for differences in size, column (6) reports the floorspace

supply elasticity, which ranges between 2.3 and 4 depending on the price growth measures and

the fixed effects specification used. We also estimate the supply elasticity using a broader quality-

adjusted measure of housing services, resulting in estimates of a similar magnitude.

The difference between floorspace and unit supply elasticities yields the intensive margin of

housing supply, as γS/H
i = γ

space
i − γunit

i . Comparing the estimated γs in column (6) with those

in column (2), we obtain an intensive margin housing supply elasticity that ranges between 1.97

and 3.62, consistent with estimated land shares in the housing production literature.17 Out of

total supply response, the response from floorspace per unit accounts for over 80%, which takes

the form of renovation and upsizing of existing home units as well as increased unit size in new

constructions. The large intensive margin supply elasticity is consistent with the observations that

almost half of American homeowners have renovated their homes (Plaut & Plaut, 2010) and that

total renovation expenses reached $326 billion in 2007 (Choi, Hong, & Scheinkman, 2014).

Column (7) reports estimated elasticities for the number of new units constructed 2000-2010 on

land that was already developed in 2001. Recall that γunit
i = γunit,new

i + γ
unit,redevelop
i . Comparing

the estimated γs in column (7) with those in columns (2) and (3), we find that about one-third

of newly built homes are through redevelopment of already-developed land, consistent with our

model that developers carry out both new development and redevelopment in response to an in-

crease in demand. The redevelopment supply elasticity further supports the urban literature that

17Other estimates of the land share range from 0.10 for Centre County, PA (Yoshida, 2016) to 0.14 for Allegheny

County, PA (Epple, Gordon, & Sieg, 2010) to 0.35 for France (Combes et al., 2019) to 1/3 for the average US housing

market (ranging from 0.11 to 0.48 in low to high-value areas (Albouy et al., 2018)). Ahlfeldt and McMillen (2014) provide

empirical support for the Cobb-Douglas functional form as a reasonable approximation to the housing production

function.
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neighborhood renewal is largely driven by the deterioration and subsequent redevelopment of the

existing housing stock (Rosenthal, 2018; Brueckner & Rosenthal, 2009). In addition, the smaller

redevelopment relative to new development elasticity supports the conjecture that redeveloping

existing land is typically costlier than developing new land.

5.2 Tract Level Heterogeneity

The local average treatment effect tract-level supply estimates in Table 6 mask substantial variation

across neighborhoods. This sub-section shows how tract-level housing supply elasticities vary as

a function of distance to CBD, land availability, topographical features, and land use regulations.

5.2.1 Unit Supply

Table 7 repeats the IV regressions in column (2) of Panel A of Table 6 with the addition of a set of

interactions between price growth and tract-level factors that may influence supply. Price growth

is constructed using the repeat sales index for columns (1)-(4) and the hedonic index for columns

(5)-(8). The housing supply response is measured by 2000-2010 Zillow new construction. All

specifications include interactions of CBD distance and an indicator for being over two-thirds

of the way from the CBD to the region edge with price growth. CBD distance is measured as

the fraction of the way from the CBD to the furthest census tract in the region from the CBD,

running from 0 to 0.66 only. We use this functional form as our identifying variation is weakest

in CBD distance band 0.66-1, where census tracts are typically very large and there is not a lot of

1990 variation in employment composition for identification. Overall, results in Table 7 show that

there is substantial within-region variation in local housing supply elasticities. In addition, results

across the two measures of price growth are very consistent.

Results in column (1) summarize the average relationship between housing supply elasticity

and CBD distance. New construction supply elasticity increases with the distance to the city edge

at a marginally decreasing rate. At the CBD, the average supply elasticity is near 0. This number

increases to 0.5 at halfway to the city edge and beyond. These microgeographic estimates provide

a supply-side explanation for the recent finding of more price growth in the center of metropolitan

areas in the latest boom (Glaeser et al., 2012; Yoshida, 2016). They are also consistent with the

observation that a given common increase in demand throughout an urban area leads to relatively
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smaller price responses and relatively greater quantity responses the further away from the center

one gets (Genesove & Han, 2013).

This positive CBD distance profile can be largely explained by the neighborhood level factors

that affect the fixed development cost. The model predicts that the extensive margin supply is

more responsive in tracts where fixed cost distributions have a fatter right tail. The latter is repre-

sented by easier development conditions, which are associated with sparser initial development,

flatter land and looser regulation. Panel B of Figure 1 shows that the average tract in our data is

almost 60% developed at the CBD but less than 10% developed at the region edge. In addition,

the fraction of tract land that is flat declines from 45% to 38% from CBDs to region edges. Fur-

thermore, land use are more regulated at 30% of the way than at the CBD. Thus, the increasing

supply elasticity along the distance to the CBD, as observed in column (1), could be a result of the

combination of these various factors.

To see how much these tract-level factors matter for the CBD distance effect, column (2) of Table

7 expands the specification in column (1) by adding interactions between ∆ ln P and a quadratic

in the 2001 fraction of land developed in each tract and the 2001 fraction of flat land in each

tract.18 Consistent with the model, we find declining supply elasticity with developed fraction, at

a decreasing rate, and a positive impact of flat land on unit supply. Moreover, CBD distance co-

efficients not only attenuate but also turn negative. The attenuation reflects a significant negative

correlation between the fraction of developed land and CBD distance as shown in Figure 1.

Conditional on topography and developed fraction, the negative CBD distance effect in col-

umn (2) likely reflects the impact of local regulations, as regulations increase on average with

CBD distance within metro regions over the range which is well covered by our data, as seen in

Figure 1 Panel B. To explicitly examine the role of regulation, column (3) expands the specification

in column (2) by including an interaction with the municipality level Wharton Regulation Index.

Its estimated impact on housing supply elasticity is negative, indicating that housing supply is

less responsive in more regulated areas. Moreover, including this variable turns the coefficient on

CBD distance from strongly negative to slightly positive, supporting the conjecture above that the

negative CBD distance effect in column (2) is partly due to regulation. However, we lose about

18As the CBD distance squared interaction is no longer significant, we drop this variable. Neither fraction flat squared

nor the interaction of fraction flat and fraction developed price interactions are significant, so we exclude these variables

as well.
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half the sample from incomplete Wharton Index coverage. In Column (4), we further restrict the

sample to the 1,528 tracts in 8 cities (represented in 12 overlapping regions) for which we have

FAR information for residentially zoned parcels. Inclusion of the FAR restriction yields an ex-

pected positive interaction coefficient of 0.12. Increasing FAR by 2 (one standard deviation) thus

increases the unit supply elasticity by 0.24, again consistent with the model.19

In columns (5)-(8), we repeat the specifications in columns (1)-(4) but use the Zillow hedonic

price index instead. Estimates are consistent across different measures of price growth. Across

columns (1)-(8), additional inclusion of tract level elevation range and other topographical features

has no significant estimated impact on supply elasticity (unreported). Given the much smaller

size and likely endogeneity concerns associated with including the regulation controls, we choose

columns (2) and (6) as the primary specifications for predicting tract level unit supply elasticities.

In unreported results, we further investigate whether the estimates from the main specifica-

tions in column (2) and (6) are robust to the inclusion of metro-level factors. In particular, we

consider the fraction of developed land and the fraction of area that is lost to hills, water and wet-

land, both measured within the 50% of the maximum radius from the city center or out to 50 km.

The effects of the tract-level factors remain consistent and robust with no additional statistically

significant effect of the metro-level factors. However, an aggregation exercise below shows how

our tract level estimates aggregate up such that these metro level factors do predict metro level

housing supply elasticities.

In columns (9) and (10) we focus on redevelopment. We repeat the main specification in

columns (2) and (6) but with redeveloped units as the dependent variable. These estimates are

simply attenuated versions of those in columns (2) and (6), with this attenuation differing with

CBD distance. Conditional on developed fraction and topography, the redevelopment elasticity

is about one-third of the full unit supply elasticity on average, with this fraction decreasing with

CBD distance. This is consistent with findings in the literature that prime teardowns are near pub-

lic transportation and traditional village centers in Chicago (Dye & McMillen, 2007) and closer to

the CBD and the coast in Miami (Munneke & Womack, 2015), possibly due to the fact that land

assembly for development is easier with undeveloped parcels in more suburban areas. In ad-

dition, the developed fraction and topography affect the redevelopment supply elasticity in the

19We have not found plausible instruments for regulatory constraints, though controls for 1990 and 2000 tract level

demographic characteristics may account for key determinants of the regulatory environment (Murphy, 2018).
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same way as they affect total unit supply, consistent with the model’s prediction. Together, the

significant within-city heterogeneity, both in new construction and in redevelopment, emphasizes

the importance of examining housing supply from a micro-geographic perspective.

5.2.2 Land Development and Floorspace

Table 8 focuses on land development and floorspace supply. Land development results in Columns

(1)-(8) very much mirror those for unit supply in columns (1)-(8) of Table 7, though with attenuated

estimates. This is consistent with the supply model in Section 3.1, as land development elasticities

do not incorporate the densification and redevelopment that are part of the unit supply elasticities

in Table 7. As expected, developed fraction, the prevalence of flat land and FAR restrictions all

matter for land development elasticities.

Columns (9) and (10) examine determinants of floorspace supply elasticities. Interestingly,

CBD distance is not significant for floorspace. As laid out in the supply model, given the rela-

tively small unit and land development supply elasticities, intensive margin responses conditional

on parcel development quantitatively dominate extensive margin responses. Because they do not

matter, we exclude CBD distance effects in our main specification for floorspace supply, only let-

ting this supply response depend on initial land development and topographical features. As with

the unit supply response, floorspace supply is more responsive when there is less developed land.

Consistent with Table 6, Table 8 shows that floorspace supply is 7-10 times more price elastic than

unit supply, though with large standard errors. Estimates are remarkably similar for a broader

housing quantity index that is constructed using additional attributes as well (not reported).

5.3 Distributions of Tract Supply Elasticities

We use the specifications in columns (2), (5), (9) and (10) in Table 7 to predict tract-level total unit

and unit redevelopment supply elasticities respectively for each tract. We similarly use specifica-

tions in columns (2), (5), (9) and (10) in Table 8 to predict land development and floorspace supply

elasticities. While the estimation sample for Tables 7 and 8 is limited, we use coefficient estimates

to predict supply elasticities for all census tracts in the 306 metro regions in our data.

Table 9 provides summary statistics of these imputed elasticities plus the decomposition of the

components of floorspace elasticity as shown in the table. Imputed elasticities are based on repeat
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sales price growth in Panel A and hedonic price growth in Panel B. Results are fully consistent

across these two measures of price growth.

Across all tracts, the mean unit supply elasticity is 0.5, of which 20-40% is from redevelopment.

The average floorspace elasticity is 3, roughly consistent with the recent finding that the estimated

land share in housing production is about 0.35 (Combes et al., 2019). These objects have standard

deviations of 0.6 and 1.1 respectively, with the most supply elastic tracts having floorspace elastic-

ities of about 4. On average, 87% of floorspace supply responses come from the intensive margin

(floorspace per unit), with only 5% from new land development and 8% from units per parcel.

However, the interquartile range of intensive margin share is 21 percent. Figure A2 shows ker-

nel density graphs of each of our four supply elasticity measures and their lower and upper 95%

confidence bands. Here we see that while there are some negative estimates for all but floorspace

elasticity, they are statistically significant in less than 2% of cases. More dispersion in floorspace

supply elasticities exists within than between regions. In particular, the standard deviation of the

floorspace supply elasticity is 1.1 across tracts, which is also approximately the tract-weighted

mean of within metro region standard deviations. In comparison, it is only 0.5 across regions after

aggregation across tracts within region, as shown below in Table 10.

Our earlier findings from Tables 7 and 8 indicate the robust pattern that local supply elasticities

typically increase with CBD distance. Panel B of Figure 1 shows that on average, the fraction of

tract developed land ranges from 60% at the CBD to less than 10% at 90 percent of the way to

the city edge. This pattern is consistent with the prediction from a monocentric model of urban

land use that the density of construction declines as one moves away from the CBD (Duranton

& Puga, 2015). Areas further away from CBDs effectively have more land with which to deliver

housing, facilitated mostly by initial development density. Average topographical conditions are

quite constant with CBD distance, with fraction flat land declining only slightly. It is therefore

tempting to conjecture that the CBD distance pattern in supply elasticities is mostly explained by

the increasing availability of developable land as one moves away from the center.

Figure 2 shows how much this is the case. Each panel shows how a different predicted supply

elasticity (unit new construction, land development, unit redevelopment and floorspace) changes

with CBD distance for the average tract. In each panel, the solid line represents the imputed sup-

ply elasticity, which is almost indistinguishable from the long dash-dot line that represents the
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imputed supply elasticity holding the fraction of flat land constant with CBD distance. Each sup-

ply elasticity except for floorspace increases with CBD distance, then declines some in the suburbs,

before increasing again toward the urban fringe. The floorspace elasticity increases monotonically

on average from CBDs to metro edges.

The remaining two lines in each panel represent the imputed supply elasticities when hold-

ing the initial developed fraction at each metro region’s mean and when holding both developed

fraction and topography at the metro mean, respectively. The two lines coincide with each other,

indicating that, on average, topography alone does not play a big role in explaining the CBD

distance pattern in local supply elasticities. Under both counterfactuals, we see supply elasticity

falling over most of the range of CBD distance for unit, land and redeveloped unit supply elas-

ticities. Mechanically, this is because of the negative CBD distance coefficients in Tables 7 and 8,

which appear to capture regulation. At CBD distance 0.66 and beyond, the specification in Tables

7 and 8 impose only a level effect, reversing this downward trend as developed fraction continues

to fall.

We plot similar figures for unit and floorspace supply elasticities in select metropolitan areas

(Los Angeles, New York, Madison and Pittsburgh) in Figures 3 and 4. Regardless of whether a

metropolitan area is considered elastic as a whole, its within-city variation in supply elasticities

is always amplified by spatial variation in the fraction developed land and topography. While

there is a tendency for supply elasticity to increase with CBD distance, this effect gets mitigated in

Pittsburgh, Los Angeles and New York by the hilly topography and variable development density

at the edges of these metro regions. In contrast, in Madison there is true monotonicity in supply

elasticity with respect to CBD distance. Holding only topography constant does not affect supply

elasticities much, though it does smooth out some local variation, which is especially evident in

the top-left graph for Los Angeles. Fixing development fraction instead leads to declining supply

elasticity with CBD distance, as does fixing both of these determining factors.

6 Aggregation

Much of the existing evidence on housing supply elasticities uses metro areas as the unit of anal-

ysis. In order to connect our estimates to these metro level estimates, in this section we aggregate

estimated tract-level housing supply elasticities to the metro area level. Aggregation brings up a
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number of conceptual and practical challenges. The typical approach, for example in Saiz (2010),

has been to use metro level labor demand and/or population supply shocks to deliver housing de-

mand shocks. However, metro level studies may find supply elasticities that weight certain types

of neighborhoods above their share of metro populations. As neighborhoods are linked in the resi-

dential demand system, metro level demand shocks of the same size but aggregated from different

combinations of changes in neighborhood fundamentals can imply different metro level housing

supply elasticities. Because of this variance to setting, here we provide a few examples of the

macro supply elasticities implied from some simple broad-based neighborhood-specific shocks.

Context matters and neighborhood level supply elasticities must be aggregated as appropriate to

the application at hand.

To get a handle on aggregation, we first note that the tract level supply elasticity for supply

measure Q, γQ
ir , generically aggregates to a metro region level elasticity, γQ

r , as follows. Aggregat-

ing tract level supply growth to the metro level means taking a sum weighted by initial neighbor-

hood shares of the housing stock:

d ln Qr = ∑
i

Qir

Qr
d ln Qir = ∑

i

Qir

Qr
γQ

ir d ln Pir = γQ
r d ln Pr

Solving out, by definition the region level elasticity is given by

γQ
r ≡ [∑

i

Qir

Qr
γQ

ir d ln Pir]/[∑
i

Qir

Qr
d ln Pir]. (25)

Here, we see that the metro level elasticity depends on the mix of neighborhoods experiencing

price growth that has been spurred by demand shocks. As neighborhoods are linked in spatial

equilibrium, it is difficult to imagine how price changes in multiple neighborhoods may occur in

mutual isolation. The following sub-section provides two examples that impose different strong

assumptions about the form of demand linkages across neighborhoods. 20

6.1 Aggregation of Common Neighborhood Demand Shocks

In this sub-section we first consider the case in which all neighborhoods simultaneously expe-

rience identical housing demand shocks. Because of differing housing supply elasticities, these

20In our data, we can only accurately measure year 2000 tract level quantities as housing units. As such, for the

purposes of aggregation Qir
Qr

is calculated using units as Hir
Hr

for all supply measures investigated.
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shocks manifest themselves as different combinations of housing price and quantity changes, de-

pending on the neighborhood. In the context of the model from Section 3.2, the tract level ex-

penditure share on housing is Sir Pir
yirπir

= 1− β. Therefore, if the demand shock changes aggregate

expected income by the same percentage in every neighborhood, d ln Sir + d ln Pir is a constant,

call it x. This would happen if the outside option ln µ in (13) changes and leaves little scope for

households to substitute across neighborhoods in response to this shock.

The resulting metro housing supply elasticity is a weighted average of tract-level elasticities,

where the weight is the initial housing share adjusted for neighborhood supply elasticity. Using

d ln Pir = x/(1 + γir) and (25) to aggregate over tracts, we have

d ln Sr

d ln Pr
= γ1

r =

∑
i

Hir
γir

1+γir

∑
i

Hir
1

1+γir

.

This expression reflects the fact that tracts with more elastic supply will receive lower weight in

aggregation because price growth is lower in these locations for a given demand shock. We apply

this same expression to aggregate unit supply elasticities, recognizing that this requires tract per-

unit price growth to match that for floorspace.

Second, we consider the alternative case in which aggregate housing demand shifts out in the

city but agents get redistributed across neighborhoods in a way that maintains the same relative

home prices across neighborhoods. This environment can be justified from the spatial equilibrium

condition of a simpler model than that in Section 3.2, as in Roback (1982), in which neighborhoods

differ in amenities but get hit with the same per-capita potential income shock, thereby driving the

same price growth rate but different tract population changes depending on the local supply elas-

ticity. In this setting, conditional on amenities and wages net of commuting costs, neighborhoods

are perfect substitutes. In this case, the metro-level supply elasticity is

d ln Sr

d ln Pr
= γ2

r = ∑
i

[
Hir

Hr
γir

]
.

Tracts with higher initial housing stocks are typically associated with smaller housing supply

response, but these tracts are weighted more in γ2
r .

Table 10 presents summary statistics for four versions of our two aggregate supply elasticity

measures γ1
r and γ2

r . Across metro regions, the mean repeat sales based unit supply elasticity is

0.6 for γ1
r and 0.7 for γ2

r , with standard deviations of 1.2 and 0.3 respectively. Our second aggrega-

tion scheme reduces dispersion because it incorporates population flows between neighborhoods.
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Analogous floorspace elasticities are 3.5 and 3.8 respectively with a standard deviation across

metros of 0.5. Compared to Saiz (2010) estimates, these unit elasticity estimates are smaller. Rank

correlations between these metro level supply elasticity measures and those found by Saiz (2010)

are between 0.35 and 0.42.

In Table 11, we examine relationships between metro-level conditions and our imputed metro-

level housing supply elasticities. Following Saiz (2010), we construct three measures of metro-

level factors that may influence supply elasticities: the fraction of land that is developed within

some CBD radius, the fraction of area that is lost to hills, water and wetland within the same

radius, and the metropolitan area level Wharton Regulation Index. We construct the first two

variables within the 10 km, 20 km, 50 km, 10%, 50% and 100% of the maximum radius from

the CBD and for the entire metropolitan area. Table 11 reports regressions of our metro supply

elasticities on these three variables, using the 50% of the way to metro edge version, though all

results discussed below are consistent across these different radii.21

We find that the metro-level developed fraction is predictive of metro supply elasticities, with

expected negative signs in all cases. Conditional on initial development density, the fraction of

a metro area that is lost to hills, waters and wetland also has a negative relationship with unit

supply elasticities, but, if anything, positive relationships with floorspace supply elasticities. This

indicates that in metros with the same initial development footprint but less land available due

to difficult topographical features, average housing units are expanded more even as fewer new

units get built. Finally, there are significant negative relationships between regulation and metro

housing supply elasticities, as expected. Note that we did not use regulation to predict the tract

level supply elasticities before aggregation. Therefore, regulation is correlated with some combi-

nation of developed fraction and land unavailable for development.

6.2 Recovering the Neighborhood Demand System

In anticipation of our evaluation of the Opportunity Zone program, we first recover estimates of

parameters that govern demand substitution patterns across neighborhoods in the model from

21Since there is large variation in metro size, measures that use percentages rather than absolute distances generate

more precise estimates.
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Section 3.2. From (13) and (18), aggregate housing demand in each tract is given by

ln Sd
i = ln ρ̃HD +(

ψ

η
− 1) ln ∑

i´∈m(i)

(
Bi′P

β−1
i′ RMA

1
ε

i′

)η

+
1 + η

ε
ln(RMAi)− (η(1− β)+ 1) ln Pi + η ln Bi.

Housing demand becomes more elastic as η and ψ
η grow, as these objects reflect how fundamen-

tally substitutable neighborhoods are for each other by residents. Therefore, understanding how

much a given exogenous demand shock (through changes in Bi for example) affects prices versus

quantities requires knowledge of these parameters.

Using the housing demand equation above, the floorspace demand elasticity is

dlnSd
i

dlnPi
= [η(β− 1)− 1] + si[

ψ

η
− 1], (26)

where si is the share of municipality m(i)’s population that is in tract i. The second term cap-

tures migration to or from other municipalities. The implied elasticity of substitution between two

neighborhoods in the same municipality is 1+ η(1− β) and that between neighborhoods in differ-

ent municipalities 1+ η(1− β) + (1− ψ
η )(si + si′). We expect neighborhoods within the same mu-

nicipality to be closer mutual substitutes than those in different municipalities, or that ψ < η. Be-

cause of Cobb-Douglas preferences, the analogous population and units elasticities of substitution

are η(1− β) between two neighborhoods in the same municipality and η(1− β) + (1− ψ
η )(si + si′)

between neighborhoods in different municipalities.

We develop an “estibration” strategy for η using the structural equation (19) from the model.

Using estimates of γ
space
ir discussed above, estimates of (κε)r from gravity regressions and cali-

brated values of 0.8 for β and 0.01 for κ as inputs,22 we estimate various specifications of equation

(19) with GMM. This includes a metro-region fixed effects specification and a municipality fixed

effects specification where each metro area is divided into 5 municipalities: one for the central city

and one each for suburbs in north, south, east and westerly directions. We impose that the error

term in (19) is orthogonal to our main instrument ∆ ln ˜RMAi. In theory, we can adopt the same

strategy to structurally estimate ψ. In practice, we do not have sufficient statistical power to pre-

cisely estimate ψ using a municipality level estimation equation. Instead, we infer the importance

of municipalities by estimating (19) with and without municipality fixed effects. We use the same

22κ = 0.01 implies that 1 minute of commuting in one direction reduces full income by 1%. We also tried estimating

κ jointly with neighborhood demand parameters, but this yielded implied values of ε that were too low, leading us to

our “estibration” strategy.

41



sample as in Tables 5-7 and the same tract weights, resulting in an estimation sample of 17,646

tracts.

As our fundamental source of identifying variation comes through labor demand shocks that

lead to housing demand (rather than supply) shocks, we lean heavily on the model’s structure to

recover these neighborhood demand estimates. In particular, the model delivers how much hous-

ing prices must change in a neighborhood for a given exogenous RMAi shock holding population

constant. Then, observations about population changes are informative about η and ψ because

these parameters govern elasticities of substitution in demand across neighborhoods. By model

construction, they also govern own price demand elasticities. While not ideal, this procedure

provides us a rough estimate to work with below.

The version with municipality fixed effects yields an estimate of η of 8.8 (se=0.9). The version

with only metro fixed effects yields an estimate of ηR of 3.3 (se=0.1). The lower estimate without

municipality fixed effects reflects less substitutability between neighborhoods in different munic-

ipalities than between neighborhoods in the same municipality. The resulting implied average

elasticity of demand for floorspace in each neighborhood is -0.2*3.3-1=-1.7 while that for units is

-0.7. These estimates are similar to estimates in Hanushek and Quigley (1980).

6.3 Opportunity Zones

As an application, we use our tract-level supply elasticity estimates to provide a rough evaluation

of the efficacy of the Opportunity Zone (OZ) provisions in the U.S. federal “Tax Cuts and Jobs

Act” of 2017. The OZ program was created to incentivize investment in economically distressed

communities. Among other incentives, the program provides preferential tax treatment of capi-

tal gains for new real estate investments within designated low-income census tracts. This may

affect local housing markets in two ways. First, the reduction in the capital gains tax liability for

investors reduces the financing costs of real estate development in these areas, which we model

as a reduction in the marginal cost of building housing by ∆s log points relative to other tracts.

Second, the tax abatement encourages investors to divert to OZ neighborhoods from other similar

neighborhoods. The investment incentive is further reinforced if OZ status spurs local govern-

ments to invest in tract amenities. We treat this as an outward shift in housing demand by ∆d

log points in terms of quantities relative to observationally equivalent tracts that do not attain OZ
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designation. Comparing OZ to similar looking non-OZ tracts, Chen, Glaeser, and Wessel (2019)

find that the OZ program had little effect on home prices. However, the program may have pre-

cipitated both demand and supply shocks for these neighborhoods, resulting in greater quantities

of housing. Whatever the true benefits of the OZ program, the primary goal of this treatment is to

use the OZ program as an example to demonstrate that paying attention to variation in housing

supply elasticities within metro regions can matter for policymaking.

Following the model from Section 3, we assume that the demand and supply for floorspace

and housing units have constant elasticity forms. Generically, these equations are:

ln Qd
i = di + εD ln Pi

ln Qs
i = siεS + εS ln Pi

Shocks of ∆d to demand and ∆s to supply yield ∆ ln Pi =
∆di−εSi∆si

εSi−εDi
. To avoid relying very strongly

on function form assumptions, this setup is most sensible for analyzing welfare impacts of small

supply shocks on consumers and small demand shocks on producers. The dollar changes in CS

and PS for small supply and demand shocks respectively are:

∆CSi = −∆Pi Hi −
1
2

∆Pi∆Hi

∆PS = ∆Pi Hi +
1
2

∆Pi∆Hi.

We measure base year prices using the 2016 repeat sales index and base year quantities of units

and floorspace in each tract using Zillow data from 2016. All values are in 2010 dollars. We impose

tract unit and floorspace demand elasticities of -0.7 and -1.7 respectively, as calculated in Section

6.2. We predict out tract supply elasticities using the results in Tables 7 and 8 and tract developed

fraction from 2011. To get a sense of the importance of local heterogeneity, we compare results

using tract level supply elasticities to those using our second version of aggregate region level

supply elasticities γ2
r . Using these assumptions, we calculate changes in CS and PS for all census

tracts for which we have reliable housing stock and price index information in 2016, including

3, 473 OZ designated tracts, given either ∆s = 0.05 or ∆d = 0.05. Assuming a capital gain of 25%

on an average real estate property and a savings of 20% in capital gains tax from the OZ program,

using ∆s = 0.05 seems reasonable.23

23Long-term capital gains are taxed at either 0, 15, or 20 percent depending on the taxpayer’s income.
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Table 12 presents the results, in which Panel A examines the market for housing units and

Panel B examines the market for floorspace. Opportunity zones are primarily located in more ur-

ban and developed areas. As a result, supply elasticities in these areas are lower than in the aver-

age neighborhood. The average OZ tract has a unit supply elasticity of 0.4 and a floorspace supply

elasticity of 2.6 relative to other tracts, with elasticities of 0.5 and 2.9 respectively. As a result, the

average opportunity zone tract has a smaller scope for gains in consumer surplus through the OZ

program relative to other tracts. Moreover, using metro region level supply elasticities overstates

consumer surplus gains from the program and understate the dispersion in these gains.

Results in the first two columns of Panel A show that in the market for housing units our

assumed supply shock would increase CS by an estimated $5.5 million on average in OZ tracts

and of $9.2 million on average if it were imposed in other tracts. Imposing metro level supply

elasticities would instead yield implies CS changes of $7.1 million in OZ tracts, with a smaller

standard deviation. Results in the third and fourth columns show that PS would also increase

more in non-OZ tracts from demand shocks of 5%. The average PS increase of $19.5 million would

be understated by $2 million using metro area level supply elasticities.

Results for the floorspace market in Panel B exhibit a similar pattern. In particular, we calculate

that the average OZ tract would experience an increase in CS of $11.9 million relative to $17.0

million for a typical non-OZ tract. These numbers are slightly larger using region level supply

elasticities. For PS, again our evidence indicates that developers in the average non-OZ tract

would benefit more from a demand shock of this type than in OZ tracts. The fact that floorspace

is relatively elastically supplied justifies the greater magnitudes of CS than PS changes in the

floorspace analysis.

7 Conclusion

Since DiPasquale (1999)’s lament on the limited work on the supply side of housing, a number of

studies have identified regulation and topographical conditions as determinants of supply elas-

ticities. Saiz (2010) in his seminal work estimates housing supply elasticities at the metropolitan

area level and characterizes them as a function of both physical and regulatory constraints. In this

paper, we follow his insights and present the first set of estimates of tract-level supply elasticities.

Knowledge of local housing supply elasticities at a microgeographic scale is not only central to
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understanding within-city house price dynamics (Glaeser et al., 2012; Guerrieri et al., 2013), but

also important for evaluating place-based policy interventions (Busso et al., 2013; Hanson, 2009).

We find that housing supply becomes more elastic further out from urban centers and that

there is more variation within than between metro areas in housing supply elasticities. This pat-

tern is in part but not entirely due to a larger fraction of land available for development. Initial

development density, availability of flat land and zoning regimes are all important determinants

of local housing supply.
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Table 1: Summary Statistics

Mean St Dev Obs Tracts

Tract Home Price Changes, Estimation Sample

Repeat Sales Index, 2000-2006 0.64 0.35 24,266 19,126

Hedonic Index, 2000-2006 0.62 0.34 24,192 19,001

Repeat Sales Index, 2000-2010 0.26 0.36 23,918 18,978

Hedonic Index, 2000-2010 0.26 0.34 24,447 19,235

Census Index, 2000-2010 0.54 0.27 25,267 19,909

Tract Housing Quantity Changes, Estimation Sample

Stock of Housing Units, Census, 2000-2010 0.08 0.23 25,361 19,985

New Units, ACS, 2000-2009 0.12 0.21 25,353 19,977

New Units, Zillow, 2000-2006 0.09 0.20 25,361 19,985

New Units, Zillow, 2000-2009 0.11 0.22 25,361 19,985

Floorspace, 2001-2011 0.34 0.83 24,044 18,728

New Units on Developed Land, ACS, 2000-2009 0.05 0.12 25,361 19,985

Developed Land, 2001-2011 0.08 0.13 25,361 19,985

Tract Employment and Population Variables

Tract Employment, 2000-2010, Regions in Est. Sample -0.15 0.89 55,981 42,693

Tract Level Bartik Instrument, 2000-2006, Regions in Est. Sample 0.09 0.05 56,238 42,866

RMA, 2000-2010, Estimation Sample 0.04 0.05 25,361 19,985

Simulated RMA, 2000-2006, Estimation Sample 0.05 0.01 25,361 19,985

Tract Level Supply Influencers, Estimation Sample

Fraction of Land Area Developed, 2001 0.33 0.21 25,361 19,985

Fraction of Land Area Flat 0.40 0.43 25,361 19,985

Wharton Real Estate Index (municipality level variation) 0.35 1.00 10,309 8,180

Residential Floor Area Ratio (8 cities) 1.74 1.31 2,001 1,382

Fraction of Way from CBD to Metro Edge 0.27 0.20 25,361 19,985

Tract Level Supply Influencers, Non-Estimation Sample

Fraction of Land Area Developed, 2001 0.37 0.24 38,535 30,424

Fraction of Land Area Flat 0.45 0.43 38,535 30,424

Wharton Real Estate Index (municipality level variation) 0.02 0.96 20,214 14,699

Residential Floor Area Ratio (8 cities) 2.26 1.88 6,706 3,385

Fraction of Way from CBD to Metro Edge 0.27 0.23 38,536 30,425

All changes are in percentage terms. The full sample includes 50,410 unique census tracts in 306 partially overlapping metro

regions with 1990 information on employment. The estimation sample includes 19,985 equally weighted unique tracts in 170

regions with at least 10 housing market transactions in 2000 and 2010 in the ZTRAX data. It excludes tracts for which the 2010

housing unit counts from Zillow is more than 20% different from the analogous 2010 census count or both the 2000 census and

Zillow counts are more than 20% apart and the tract is outside a state for which Zillow collects complete assessment data.
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Table 2: OLS Housing Supply Elasticity Estimates

∆ ln S(supply)

(1) (2) (3) (4) (5) (6) (7)

Quantity Measure New Units New Units New Units Units Develop. Land Floorspace Redev Units

Source Zillow Zillow ACS Census USGS Zillow Zillow & USGS

Time Period 2000-2006 2000-2010 2000-2010 2000-2010 2001-2011 2001-2011 2000-2010

∆ ln P (Repeat Sales) 0.06*** 0.06*** 0.06*** 0.09*** 0.02*** 0.17*** 0.03***

(0.01) (0.01) (0.01) (0.01) (0.00) (0.02) (0.00)

Obs 24,265 23,917 23,909 23,917 23,917 22,654 23,917

∆ ln P (Hedonic) 0.07*** 0.08*** 0.07*** 0.12*** 0.03*** 0.21*** 0.03***

(0.01) (0.01) (0.01) (0.01) (0.00) (0.02) (0.00)

Obs 24,189 24,442 24,434 24,442 24,442 23,447 24,442

The price growth measures are constructed from the Zillow. Each cell represents a separate regression. Regressions include metro region fixed

effects, a quadratic in fraction of the way from the CBD to the metro edge, an indicator for being beyond 66% of the way to the edge, fraction

tract developed in 2001, fraction of tract land flat, log 1990 tract employment, the 2000-2006 Bartik shock for the tract and the following tract

attributes measured in 1990 and 2000: census home price index, rent index, log population, log avg hh income, share black, share white and

share college. The estimation sample for the repeat sales index uses data from 161 metro regions while that for the hedonic index uses data from

164 regions. These samples are reduced by 1 region for the repeat sales index and 3 regions for the hedonic index in Column 1 and by 4 regions

in column 6 for both price measures due to missing data on the outcome. The hedonic index sample excludes tracts in the repeat sales sample

containing homes for which age and/or floorspace are not observed in 2000 or 2010. The repeat sales sample excludes tracts in the hedonic

sample containing homes that only transacted once. Robust standard errors are in parentheses. While some are duplicated across regions, each

census tract receives equal weight.
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Table 3: Regressions of Emp. Growth on Bartik Shocks

(1) (2) (3) (4)

Change in log Employment

2000-2006 2000-2010

Tract Bartik Shock, 2000-2006 0.38*** 0.27** 0.73*** 0.68***

(0.12) (0.12) (0.12) (0.12)

No 1990 Emp. Info. 0.03 0.01 0.07*** 0.06**

(0.03) (0.03) (0.03) (0.03)

Observations 53,732 53,444 55,981 55,681

R-squared 0.05 0.05 0.05 0.05

Number of Regions 162 170

Number of Region_Rings 2,453 2,573

Regressions also include log 1990 tract employment and the following tract at-

tributes from 1990 and 2000: census home price index, rent index, log pop, log

avg hh income, fraction black, fraction white, fraction college. Sample includes all

tracts in metro regions that are in the primary sample. Each tract receives equal

weight. Robust standard errors in parentheses.
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Table 4: Tract-Level Housing Market Dynamics

(1) (2) (3) (4)

∆ln House Price ∆ln House Quant.

2000-2010 2000-2010

∆ln House Price, 1990-2000 -0.24*** -0.25*** 0.02 0.01

(0.01) (0.01) (0.01) (0.02)

∆ln House Quantity, 1990-2000 0.01 0.01 0.22*** 0.17***

(0.03) (0.03) (0.04) (0.04)

Region All FE Yes No Yes No

Region-Ring FE No Yes No Yes

(5) (6) (7) (8)

∆ln House Price ∆ln House Quant.

1990-2000 1990-2000

∆ln Sim. RMA, 2000-2006 -0.58 -2.00** 0.22 0.03

(1.17) (0.95) (0.34) (0.35)

Region All FE Yes No Yes No

Region-Ring FE No Yes No Yes

Price changes and housing quantity changes are constructed based on the Census data, as detailed

in Section 3. Each entry is from a separate regression of the variable at top on the variable at left

with the indicated fixed effects. Lagged demographic controls are the same as in Table 2, excluding

the 1990 and 2000 census house price and rent indexes. Standard errors are corrected for spatial

autocorrelation up to 25km.
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Table 5: First Stage Results

∆ln House Price (Zillow Repeat Sales)

2000-2006 2000-2010

∆ ln Simulated RMA, 2000-2006 6.76*** 7.83*** 6.11*** 4.25***

(1.81) (1.57) (1.44) (1.23)

Observations 24,266 24,266 23,918 23,918

R-squared 0.14 0.11 0.21 0.17

Number of Fixed Effects 160 1,793 161 1,800

∆ln House Price (Zillow Hedonic)

2000-2006 2000-2010

∆ln Simulated RMA, 2000-2006 6.66*** 7.46*** 6.06*** 3.86***

(1.84) (1.66) (1.42) (1.21)

Observations 24,192 24,192 24,447 24,447

R-squared 0.16 0.13 0.20 0.16

Number of Fixed Effects 161 1,762 164 1,784

∆ln House Price (Census Hedonic) RMA

2000-2010 2000-2010

∆ln Simulated RMA, 2000-2006 0.17 2.35** 0.76*** 0.71***

(1.25) (1.15) (0.18) (0.17)

Observations 25,267 25,267 25,361 25,361

R-squared 0.08 0.07 0.04 0.02

Number of Fixed Effects 166 1,858 166 1,860

Region All FE Yes No Yes No

Region-Ring FE No Yes No Yes

Regressions include the same controls as in Table 2. Tracts are equally weighted, even if they appear

in multiple metro regions. Standard errors are corrected for spatial autocorrelation up to 25 km using a

Bartlett kernel.
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Table 6: Unified IV Results for Housing Supply

∆ ln S(supply)

(1) (2) (3) (4) (5) (6) (7)

Quantity Measure New Units New Units New Units Units Develop. Land Floorspace Redev Units

Source Zillow Zillow ACS Census USGS Zillow Zillow & USGS

Time Period 2000-2006 2000-2010 2000-2010 2000-2010 2001-2011 2001-2011 2000-2010

Panel A: Controls for Region Fixed Effects

∆ ln P, Repeat Sales 0.26** 0.31** 0.24** 0.35*** 0.13 2.28** 0.11*

(0.11) (0.12) (0.11) (0.13) (0.08) (0.91) (0.06)

∆ ln P, Hedonic 0.25** 0.30** 0.22** 0.33** 0.13 2.59*** 0.09

(0.11) (0.12) (0.11) (0.13) (0.08) (0.92) (0.06)

Panel B: Controls for Region-Ring Fixed Effects

∆ ln P, Repeat Sales 0.18** 0.40** 0.28* 0.30* 0.19 3.73*** 0.11

(0.09) (0.20) (0.16) (0.17) (0.12) (1.41) (0.08)

∆ ln P, Hedonic 0.19** 0.42* 0.26 0.26 0.17 4.04*** 0.10

(0.09) (0.22) (0.17) (0.18) (0.13) (1.47) (0.09)

The price growth measures are constructed from the Zillow. Each cell represents a separate regression. Specifications are the same as in Table 2,

except that the 2000-2006 change in ln simulated RMA instruments for changes in prices. See the notes to Table 2 for details about specification

and sample sizes. Standard errors are corrected for spatial autocorrelation to 25 km. First stage F-statistics can be determined from results in

Table 5.
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Table 7: Heterogeneity in Unit Supply Elasticities by CBD Distance and Tract Conditions

∆ ln S(supply)

New Units Construction Units Redevelopment

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

∆lnP -0.01 2.00*** 1.24*** -0.90 -0.00 1.91*** 1.26*** -1.28 0.84** 0.85**

(0.14) (0.72) (0.26) (0.67) (0.13) (0.71) (0.29) (0.89) (0.33) (0.34)

∆lnP x (CBD Dis) 1.60*** -1.19** 0.23 -1.08 1.25*** -1.46** -0.02 -0.94 -0.66** -0.83**

(0.55) (0.61) (0.57) (1.66) (0.48) (0.69) (0.65) (1.62) (0.28) (0.33)

∆lnP x (CBD Dis)2 -1.28** -1.14**

(0.54) (0.50)

∆lnP x Edge 0.51*** -0.96** -0.04 1.39 0.34** -1.05** -0.15 -1.43 -0.53** -0.58**

(0.18) (0.44) (0.25) (1.31) (0.14) (0.49) (0.23) (2.67) (0.21) (0.24)

∆lnP x %Dev -6.52*** -3.67*** 0.37 -5.92*** -3.85*** 0.86 -2.82*** -2.80***

(1.83) (0.68) (0.60) (1.86) (0.75) (0.71) (0.90) (0.96)

∆lnP x %Dev2 5.00*** 2.80*** -0.33 4.24*** 2.99*** -0.70 2.26*** 2.11***

(1.31) (0.71) (0.50) (1.27) (0.80) (0.55) (0.68) (0.69)

∆lnP x %Flat 0.55* 0.10 0.62 0.62* 0.07 0.95 0.25* 0.29*

(0.30) (0.14) (0.60) (0.36) (0.12) (0.81) (0.13) (0.16)

∆lnP x WRLURI -0.03** -0.02

(0.02) (0.02)

∆lnP x (Res. FAR) 0.12*** 0.10**

(0.04) (0.04)

Observations 23,917 23,917 9,431 1,528 24,442 24,442 9,887 1,952 23,917 24,442

∆lnP Measure RS RS RS RS HI HI HI HI RS HI

Regressions are the same specification as in column (2) of Panel A in Table 6 with the addition of indicated interaction

terms, though WRLURI and FAR main effects are excluded in Columns 3, 4, 7 and 8 to maintain statistical power. SE

adjusted for spatial autocorrelation to 25km. If included where omitted, coefficients on ∆lnP x (CBD Dis)2 would be

insignificant.
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Table 8: Heterogeneity in Land & Floorspace Supply Elasticities by CBD Dis. & Tract Conditions

∆ ln S(supply)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Developed Land Floorspace

∆lnP 0.02 0.73** 0.81*** 0.03 0.01 0.75** 0.80*** -0.05 5.43** 4.83***

(0.08) (0.35) (0.18) (0.21) (0.09) (0.34) (0.21) (0.27) (2.71) (1.85)

∆lnP x (CBD Dis) 0.46* -0.43 0.17 0.04 0.40 -0.51* -0.09 -0.19

(0.27) (0.28) (0.42) (0.44) (0.25) (0.31) (0.51) (0.46)

∆lnP x (CBD Dis)2 -0.29 -0.25

(0.28) (0.28)

∆lnP x Edge 0.15 -0.38* -0.05 0.04 0.13 -0.41* -0.12 0.16

(0.10) (0.19) (0.18) (0.16) (0.08) (0.22) (0.18) (0.58)

∆lnP x %Dev -2.32*** -2.49*** -0.42** -2.35*** -2.66*** -0.37 -14.28*** -11.90***

(0.81) (0.48) (0.20) (0.83) (0.53) (0.23) (5.23) (3.44)

∆lnP x %Dev2 1.65*** 1.76*** 0.23 1.62*** 1.98*** 0.23 14.30*** 12.84***

(0.59) (0.52) (0.19) (0.59) (0.58) (0.19) (5.38) (4.48)

∆lnP x %Flat 0.24* 0.13 0.10 0.27* 0.11 0.17 0.24 0.03

(0.13) (0.11) (0.15) (0.16) (0.10) (0.23) (0.51) (0.54)

∆lnP x WRLURI -0.01 -0.01

(0.01) (0.01)

∆lnP x (Res. FAR) 0.03*** 0.02*

(0.01) (0.01)

Observations 23,917 23,917 9,431 1,528 24,442 24,442 9,887 1,952 22,654 23,447

∆lnP Measure RS RS RS RS HI HI HI HI RS HI

Regressions are the same specification as in Table 6 with the addition of indicated interaction terms, though WRLURI

and FAR main effects are excluded in Columns 3, 4, 7 and 8 to maintain statistical power. SE adjusted for spatial

autocorr. to 25km. If included where omitted, coefficients on ∆lnP x (CBD Dis)2 would be insignificant.
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Table 9: Summary of Tract Level Supply Elasticities (γi)

25th Pctile Median 75th Pctile Mean St. Dev.

Panel A: Based on Repeat Sales Price Growth

γunit
i = γ

redevelop
i + γ

new develop
i

Units 0.1 0.4 0.9 0.5 0.6

Redevelopment 0.0 0.2 0.3 0.2 0.2

γ
space
i = γland

i + γunit/land
i + γ

space/unit
i

Floorspace 2.1 2.6 3.7 3.0 1.1

Land Development 0.0 0.2 0.3 0.2 0.2

2% 6% 10% 5% 6%

Units per Land 0.1 0.2 0.6 0.3 0.4

3% 10% 15% 8% 9%

Floorspace per Unit 2.0 2.3 3.0 2.5 0.7

75% 84% 96% 87% 15%

Panel B: Based on Hedonic Price Growth

γunit
i = γ

redevelop
i + γ

new develop
i

Units 0.1 0.4 0.8 0.5 0.6

Redevelopment 0.0 0.1 0.3 0.1 0.2

γ
space
i = γland

i + γunit/land
i + γ

space/unit
i

Floorspace 2.2 2.6 3.5 2.9 0.9

Land Development 0.0 0.2 0.3 0.2 0.2

1% 7% 11% 6% 7%

Units per Land 0.0 0.2 0.5 0.3 0.3

2% 9% 15% 8% 10%

Floorspace per Unit 2.0 2.3 2.9 2.5 0.6

74% 84% 97% 86% 17%

50,409 unique tracts are equally weighted across 63,896 observations. Percentages capture the

distributions of fractions of floorspace elasticities accounted for by indicated components. To

impute percentages, we first impute the fraction of a given component in each tract and then

average the fractions across tracts.
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Table 10: Summary Statistics of Metro Level Supply Elasticities (γr)

Rank Corr

25th Pctile Median 75th Pctile Mean St Dev w/ Saiz

γ1
r : Less Substitution Across Neighborhoods (306 Metros)

Units (RS) 0.4 0.6 0.8 0.6 1.2 0.39

Units (HI) 0.3 0.6 0.8 0.5 0.5 0.35

Floorspace (RS) 2.8 3.1 3.5 3.2 0.5 0.39

Floorspace (HI) 2.7 3.0 3.3 3.0 0.4 0.37

γ2
r : More Substitution Across Neighborhoods (306 Metros)

Units (RS) 0.6 0.8 1.0 0.7 0.3 0.40

Units (HI) 0.5 0.7 0.9 0.7 0.3 0.37

Floorspace (RS) 3.0 3.4 3.8 3.5 0.5 0.42

Floorspace (HI) 2.9 3.2 3.5 3.2 0.4 0.39

Saiz (2010) Unit Elasticities (236 Metros)

1.6 2.3 3.4 2.6 1.5 1
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Table 11: Heterogeneity in Metro-Level Supply Elasticities

(1) (2) (3) (4) (5) (6) (7) (8)

Less Sub. Across Neighborhoods (γ1
r ) More Sub. Across Neighborhoods (γ2

r )

Units Units Floorspace Floorspace Units Units Floorspace Floorspace

(RS) (HI) (RS) (HI) (RS) (HI) (RS) (HI)

Frac. Devel w/in 50% of Edge -4.82*** -5.04*** -3.88*** -2.81*** -3.66*** -3.72*** -4.64*** -3.29***

(1.42) (0.58) (0.51) (0.41) (0.28) (0.28) (0.53) (0.43)

Frac. Unavail for Dev. w/in 50% of Edge 0.36 -0.35** 0.24* 0.29*** -0.15** -0.21*** 0.22 0.28**

(0.38) (0.16) (0.14) (0.11) (0.08) (0.08) (0.14) (0.11)

Metro Wharton Regulation Index -0.09 -0.12*** -0.13*** -0.08*** -0.09*** -0.09*** -0.14*** -0.09***

(0.09) (0.04) (0.03) (0.03) (0.02) (0.02) (0.03) (0.03)

Constant 0.89*** 0.92*** 3.39*** 3.16*** 1.02*** 0.98*** 3.72*** 3.37***

(0.15) (0.06) (0.06) (0.05) (0.03) (0.03) (0.06) (0.05)

Observations 306 306 306 306 306 306 306 306

R-squared 0.06 0.26 0.25 0.23 0.45 0.45 0.30 0.26

The dependent variable is the indicated aggregated metro level supply elasticity.

Results are similar when using analogous variables measured within 50 km of CBDs instead, as in Saiz (2010).
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Table 12: Welfare Consequences of the OZ Program (millions of $2016)

Opportunity Zone Yes No Yes No

∆d 0 0 0.05 0.05

∆s 0.05 0.05 0 0

Welfare Measure CS CS PS PS

Panel A: Market for Housing Units

Tract Supply Elasticity 0.4 0.5 0.4 0.5

(0.4) (0.5) (0.4) (0.5)

Calc. Using Tract Supply Elasticities 5.5 9.2 19.5 25.0

(9.1) (12.4) (17.1) (23.9)

Calc. Using Region Supply Elasticities 7.1 9.3 17.3 24.8

(8.5) (10.9) (18.8) (25.7)

Panel B: Market for Floorspace

Tract Supply Elasticity 2.6 2.9 2.6 2.9

(0.8) (1.1) (0.8) (1.1)

Calc. Using Tract Supply Elasticities 11.9 17.0 4.4 5.9

(11.8) (15.9) (3.6) (5.0)

Calc. Using Region Supply Elasticities 12.4 17.2 4.1 5.8

(11.2) (15.2) (3.7) (5.1)

Tract means with standard deviations in parentheses. Entries are calculated using assumptions

about demand and supply shocks indicated in column headers. Analysis is for 3,473 opportunity

zone tracts and 35,472 other tracts for which we could construct house price and quantity infor-

mation in 2016. Estimates use a floorspace demand elasticity of -1.7 and a units demand elasticity

of -0.7. Regional supply elasticities are 0.5 for units and 3.0 for floorspace on average for OZ and

non-OZ tracts alike. In the floorspace market, indicated increases amount to 2.1 percent of CS and

4.2 percent of PS using tract supply elasticities for both OZ and non-OZ tracts. These percentages

are undefined in the market for housing units because inelastic demand makes CS infinite.
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A Housing Supply

A.1 Setup

The developer’s profit consists of revenue net of the fixed development cost for plot il, the variable

cost and the land aquisition cost, respectively.

πil = Pi Ai − gil − Ci(Ai)− pil

The developer is subject to marginal cost pricing Pi =
dCi(Ai)

dAi
and chooses the optimal amount of

floorspace A∗i = Ai(Pi) accordingly. The 0 profit condition requires that the bid for each plot of

undeveloped land is, after substituting dCi(Ai)
dAi

for Pi:

pil = Ci(Ai)(
d ln Ci(A∗i )

d ln Ai
− 1)− gil .

This is the bid rent function for plot of land il. Henceforth, assume that d ln Ci(Ai)
d ln Ai

− 1 = φ > 0. This

is consistent with Cobb-Douglas production, as described below.

Each tract has a distribution of the fixed costs of development Fi(x), with this distribution

depending on some tract-specific parameter. Normalizing the opportunity cost per unit of land of

0, this means that the fraction of land developed in each tract is Fi[φCi(A∗i )].

A.2 Tract Housing Services Supply

The amount of developed land in tract i is MiFi(φCi(A∗i )), where Mi is the number of plots of

land in tract i. The implied tract aggregate housing services (floorspace) supply function Si(Pi)

is [housing services per parcel]x[number of parcels of land]x[fraction of plots developed]. Taking

logs, we have

ln Si(Pi) = ln Ai(Pi) + ln Mi + ln Fi(φCi[Ai(Pi)]).

Differentiating, the supply elasticity decomposes as

d ln Si

d ln Pi
=

d ln Ai(Pi)

d ln Pi
+

fi(φCi[A∗i ])
Fi(φC[A∗i ])

φMC(A∗i )Pi
dAi(Pi)

dPi

=
d ln Ai(Pi)

d ln Pi
+

fi(φCi[A∗i ])
Fi(φC[A∗i ])

d ln Ai(Pi)

d ln Pi
φPi A∗i

This expression reflects intensive and extensive margin responses respectively.
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A.3 Parameterization with Cobb-Douglas Production

The production function is Ai = κi M
α
i K1−α

i , where Mi is the exogenous parcel size and Ki is the

only variable factor. Going through profit maximization, as above, yields the following factor

demand, where ι is the cost of capital. As is standard in the literature, we assume that ι does not

vary by location.

K∗i = (
1− α

ι
)

1
α κ

1
α
i P

1
α

i Mi

Floorspace per parcel is

A∗i = (
1− α

ι
)

1−α
α Miκ

1
α
i P

1−α
α

i

and variable cost is

Ci = ι

[
Ai

κi M
α
i

] 1
1−α

= (1− α)
1
α ι1−

1
α κ

1
α
i P

1
α

i Mi.

From these objects, note that d ln Ai
d ln Pi

= 1−α
α , MC(Ai) = dCi

dAi
= ι

1−α

[
1

κi Mi
α

] 1
1−α A

α
1−α

i , and the

developer’s revenue from one parcel is Mi(
1−α

ι )
1−α

α κ
1
α
i P

1
α

i . As a result, Revenuei
Variable Costi

= 1
1−α and φ =

α
1−α .

Plugging in, the resulting elasticity expression is

d ln Si

d ln Pi
=

1− α

α
+

fi[α(
1−α

ι )
1−α

α Miκ
1
α
i P

1
α

i ]

Fi[α(
1−α

ι )
1−α

α Miκ
1
α
i P

1
α

i ]
(

1− α

ι
)

1−α
α Miκ

1
α
i P

1
α

i .

A.4 Parameterization with a Frechet fixed Cost Distribution

We consider Frechet fixed cost distributions with the common dispersion parameter λ and tract-

specific scale parameter Γi. We express the CDF as Fi(x) = exp[−Γix−λ] and the associated PDF

as fi(x) = λΓix−1−λ exp[−Γix−λ]. Therefore, fi(x)
Fi(x) = λΓix−1−λ.

Plugging into the expression above, the overall supply elasticity is

d ln Si

d ln Pi
=

[
d ln A(Pi)

d ln P
+

λΓi

(φCi)1+λ

d ln A(Pi)

d ln Pi
φPi A∗i

]
.

Under Cobb-Douglas production,

d ln Si

d ln Pi
=

1− α

α
+ α−1−λ(

1− α

ι
)−λ 1−α

α λM−λ
i κ

− λ
α

i P−
λ
α

i Γi.

Defining ρi = ( 1−α
ι )

1−α
α Miκ

1
α
i , the extensive margin component can be written as α−1−λλρ−λ

i P−
λ
α

i Γi.
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A.5 Land Redevelopment

Above we treated fi(x) as the density of fixed costs of land preparation for development, whether

or not parcels had been developed prior. Denote as f L
i (x) the density of fixed costs of land prepa-

ration across all parcels in a tract in an environment in which it had not been developed prior.

Fraction MR
i

Mi
of parcels up to fixed cost gi has been previously developed. We suppose that

previously developed parcels become r dollars more expensive to redevelop relative to the orig-

inal fixed development cost. Then the new density of redevelopment fixed costs is f R
i (z) =

f L
i (x−r))
MR

i /Mi
1(z ≤ gi + r). This is the left tail of the f L

i (x) distribution, shifted by the additional

parcel preparation cost r and rescaled to integrate to 1, where MR
i /Mi = FL(φCi). The new

distribution of fixed costs of developing undeveloped land is f U
i (z) =

f L
i (x)

MU
i /M 1(z ≥ gi). This is

the right tail of the f L
i (x) distribution. That is, both have support between fixed costs of gi and

gi + r. Using these ideas, we decompose the fixed cost distribution Fi(z) from Section A.1 into

Fi(z) =
MR

i
Mi

FR
i (z) +

MU
i

Mi
FU

i (z) = FL
i (x − r)1(x ≤ gi) + FL

i (x)1(x ≥ gi). Figure A1 shows plots of

f L(x), f R(x) and f U(x) for an example tract. As Pi rises, marginal land parcels are developed left

to right in the region of overlapping support of the f R(x) and f U(x) distributions.

With these definitions of FR
i (x) and FU

i (x) established, the generic revised aggregate tract

floorspace supply function is

Si(Pi) = Ai(Pi)[MR
i FR

i (φCi) + MU
i FU

i (φCi)].

Relative to an initial baseline, prices rise such that gi < φCi < gi + r. As a result, developers draw

from both the previously developed and undeveloped land for their new developments.

d ln Si

d ln Pi
=

d ln Ai(Pi)

d ln Pi
+

MR
i f R

i (φCi) + MU
i f U

i (φCi)

MR
i FR

i (φCi) + MU
i FU

i (φCi)

d ln Ai(Pi)

d ln P
φPi A∗i

=
d ln Ai(Pi)

d ln Pi
[1 +

MR
i f R

i (φCi)

MR′
i

+
MU

i f U
i (φCi)

MR′
i

]φPi A∗i .

Here MR′
i denotes the current mass of developed land.

We want the unit supply elasticity γunit
i to decompose as γunit,R

i + γunit,U
i =

dHR
i /Hi

d ln Pi
+

dHU
i /Hi

d ln Pi
.

As a baseline, observe that

Hi = HR
i + HU

i =
Hi

Li
[MR

i FR
i (φCi) + MU

i FU
i (φCi)].
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Differentiating,

dHR
i

Hi
=

H
L d[MR

i FR
i (φCi)] + MR

i FR
i (φCi)d H

L
H
L [M

R
i FR

i (φCi) + MU
i FU

i (φCi)]

=
d[MR

i FR
i (φCi)]

MR
i FR

i (φCi) + MU
i FU

i (φCi)
+

MR
i FR

i (φCi)

MR
i FR

i (φCi) + MU
i FU

i (φCi)
d ln

H
L

=
MR

i FR
i (φCi)

MR
i FR

i (φCi) + MU
i FU

i (φCi)
d ln[MR

i FR
i (φCi)] +

MR
i FR

i (φCi)

MR
i FR

i (φCi) + MU
i FU

i (φCi)
d ln

H
L

Therefore,

γunit,R
i =

MR
i FR

i (φCi)

MR′
i

[
d ln Hi/Li

d ln Pi
+

f R
i (φCi)

FR
i (φCi)

φPi A∗i ].

Analogously,

γunit,U
i =

MU
i FU

i (φCi)

MR′
i

[
d ln Hi/Li

d ln Pi
+

f U
i (φCi)

FU
i (φCi)

φPi A∗i ].

A.6 FAR Restriction

The tract level FAR constraint is Floorspace
Lot Size = Di. Suppose that the price is sufficiently high such

that the developer builds up to the point that Ai = Di Mi, and is constrained at this point. Profits

are now

πil = Pi Ai − gil − Ci(Ai)− pil ,

directly pinning down the parcel price through the 0-profit condition. Therefore, fraction Fi(Pi Ai−

Ci(Ai)) of available land is developed.

With the tract developed at the maximum allowed floorspace on each parcel, the supply func-

tion is

ln SFAR
i = ln(Ai) + ln Mi + ln Fi(Pi Ai − Ci(Ai)).

Therefore, the tract supply elasticity comes from the extensive margin only. It is

d ln SFAR
i

d ln Pi
=

d ln LFAR
i

d ln Pi
=

fi(Pi Ai − Ci(Ai))

Fi(Pi Ai − Ci(Ai))
Ai.

Depending on the shape of f , this could mean the relaxation of a FAR results in a greater or

smaller extensive margin supply elasticity. The selection effect of increasing variable profit from

Pi Ai − Ci(Ai) to φCi(Ai) may go in the opposite direction of the incentive effect of increasing

marginal revenue from Ai to Pi A∗i .
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B Housing Demand Model

The fraction of residents of tract i that work in j Pr( viω Bizijkωwjk

P1−β
i eκτij

>= maxj′,k′
viω Bizij′k′ωwj′k′

P1−β
i e

κτij′ ) can be

determined using the properties of the Frechet draws zijkω.

πij|i =
∑k
[
wjke−κτij

]ε

∑k ∑j′
[
wj′ke−κτij′

]ε ≡
∑k
[
wjke−κτij

]ε

RMAi
(27)

We write this expression as a function of resident market access RMAi ≡ ∑k ∑j
[
wjke−κτij

]ε, which

is a summary measure of the access to employment opportunities from residential neighborhood

i.

Before the productivity shock is revealed, the expected income (wage net of commuting cost)

yi associated with residing in tract i is E(maxj,k
wjkzijkω

eκτij ). Solving this through,

yi = Γ(1− 1
ε
)(RMA)

1
ε
i (28)

This object is increasing in RMAi and declining in ε. As ε increases, there is a smaller dispersion

in skill prices across locations, reducing the probability of individuals receiving high wage offers

in any location.

The probability that i is the highest utility residential location is the probability that the inclu-

sive value of municipality r is the highest times the probability that neighborhood i is the highest

utility neighborhood in municipality m. Using properties of the Frechet distribution, this sec-

ond object is

(
Bi P

β−1
i yi

)η

∑i′
(

Pβ−1
i′ Bi′yi′

)η . The second object is
∑i´∈m(i)

(
Bi′P

β−1
i′ yi′

)η
]

ψ
η

∑m[∑i´∈m(i)

(
Bi′P

β−1
i′ yi′

)η
]

ψ
η ]

Plugging in for yi gives the

population supply function in the text.

The probability that j is the highest utility work location for a resident of any given tract i is

πij|i =
∑k

[
wjke−κτij

]ε

∑k ∑j′
[
wj′ke−κτij

]ε . Summing over the probability of living in i, we recover the labor supply to

tract j in the text.

Substituting for (19) in housing demand (18), setting it equal to housing supply (2), solving for

price and differentiating yields the growth rate in tract house price, expressed as follows.

d ln Pi =
1

ε(γi + 1)
+

1
γi + 1 + η(1− β)

η

ε
(1− 1− β

γi + 1
)d ln RMAi + vP

m + uP
i (29)

This equation shows, as is intuitive, that positive shocks to employment opportunities get cap-

italized into home prices. The amount of capitalization is of course decreasing in the floorspace
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supply elasticity γi and in the dispersion of amenity draws within municipality m, an object which

is negatively related to η. Changes in housing productivity, average lot size and the local amenity

Bi show up in the error term uP
i . Because RMAi itself depends on quantities and prices throughout

the region, it is also a function of these objects.

Finally, the model delivers the following implicit equation which describes the relationship

between change in d ln RMAi and municipality level aggregates of tract population growth d ln πi.

∑
i(m)

si[1 +
ψ(1− β)

1 + γi
]d ln πi −Λ− ψ

ε ∑
i(m)

[si(1−
1− β

1 + γi
)]d ln RMAi = um (30)

In this equation, si is the base year share of municipality r’s population living in tract i. As ψ rises,

dispersion in preferences across municipalities falls. As a result, positive shocks to RMA in any

neighborhoods within m result in more rapid population growth in this municipality.
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