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Abstract

In this paper we seek to understand the role of financial constraints in the housing market
and their effectiveness as a macroprudential policy tool aimed at cooling a housing boom. We
exploit a natural experiment arising from the 2012 Canadian law change that restricts access
to mortgage insurance (MI) to homes under one million dollars ($1M). Our empirical analy-
sis is motivated by a directed search model that features auction mechanisms and financially
constrained bidders. We model the MI regulation as a tightening of the financial constraint
faced by a subset of prospective buyers. This prompts some sellers in the near $1M segments
to strategically adjust their asking price to $1M, which attracts both constrained and uncon-
strained buyers. Competition between bidders dampens the impact of the policy on sales prices.
Using transaction data from the Toronto housing market, we find that the limitation of MI
causes a sharp bunching of homes listed at the $1M, with two-thirds of bunching coming from
houses that have otherwise been listed below $995, 000, and the remaining from houses that
have otherwise been listed above $1M. In addition, we find a smaller degree of bunching of
the sales price at $1M, most of which comes from houses that would have otherwise been sold
above $1M. Thus the MI cools down the targeted segment in the desired direction, although its
impact is attenuated by heightened competition among bidders. Overall, our analysis points
to the importance of strategic and equilibrium considerations in assessing the effectiveness of
macroprudential policies.

Keywords: macroprudential regulation, directed search, financial constraints, bunching esti-
mation
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1 Introduction

Financial constraints are a fundamental feature of the housing market (Stein, 1995; Genesove

and Mayer, 1997; Ortalo-Magne and Rady, 2006; Favilukis et al., 2017). On the buyer side,

the required downpayment (e.g. loan-to-value ratio) and mortgage payment (e.g. debt-to-

income ratio) reflect the two underwriting constraints, on wealth and income respectively,

that limit how much a buyer can bid on a property. On the seller side, the decision to

list a house for sale and the choice of asking price depend on the perceived ability to pay

among potential buyers. The central role of financial constraints makes them by far the most

widespread policy vehicles that have been used to influence housing markets. For example,

Kuttner and Shim (2016) document 94 actions on the loan-to-value ratio and 45 actions on

the debt-service-to-income ratio in 60 countries between 1990–2012.1 In particular, since the

global financial crisis of 2008, tightening financial constraints has become one of the primary

macroprudential tools that aim to create a buffer in a boom to ensure that “shocks from the

housing sector do not spill over and threaten economic and financial stability” (IMF Speech,

2014).2 In light of this, a large and important literature has emerged to examine how such

policies affect house price growth through their impact on borrower credit worthiness(e.g.,

Mian and Sufi (2009)). However, despite the importance of understanding the link between

financial constraints and behaviour in housing markets where buyers and sellers face op-

timization frictions such as search costs, there is virtually no existing micro analysis from

such settings. This paper aims to fill this gap by providing a search theoretical analysis to

explore strategic and equilibrium implications of financial constraints in housing markets,

and by empirically exploiting a natural experiment arising from a mortgage insurance policy

implemented in Canada in 2012.

We exploit variations in the required downpayment created by a recent policy that re-

stricts access to mortgage insurance (the transfer of mortgage default risk from lenders to

1Also see Elliott et al. (2013) for a comprehensive survey of the history of cyclical macroprudential policies
in the U.S.

2Source: “Managing House Price Boom: The Role of Macroprudential Policies.” December 2014, https:
//www.imf.org/external/np/speeches/2014/121114.htm.
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insurers; henceforth MI) when the purchase price of a home exceeds 1 million Canadian dol-

lars.3 Given that lenders are required to insure mortgages with over 80% loan-to-value ratio,

the policy effectively imposes a 20% minimum downpayment constraint for buyers of homes

of $1M or more. Despite the government’s clear intention to restrain price appreciation in

the higher-end segments of housing markets,4 it is not straightforward whether and how

market participants would respond to such policy. Like many other financial constraints, the

million dollar policy not only reduces the set of buyers able to afford million dollar homes;

but also creates incentives for sellers to adjust asking price to attract both constrained and

unconstrained buyers, resulting in “a ‘red hot’ market for homes under $999,999” (Financial

Post, 2013). Thus, understanding the impact of the million dollar policy on transaction

outcomes requires an equilibrium analysis of a two-sided housing market. In this sense, al-

though the focus in this paper is on the down payment discontinuity at a specific threshold

of house price, our analysis has a broad applicability to examining the behavorial responses

to financial constraints in a market with frictions.

We begin by advancing a search theoretical model of the million dollar housing market

segment that guides the subsequent empirical analysis. The model is one of directed search

and auctions, and features financial constraints on the buyer side and free entry on the seller

side. Sellers pay a cost to list their house and post an asking price, and buyers allocate

themselves across sellers subject to search/coordination frictions governed by a many-to-one

meeting technology. Prices are determined by an auction mechanism: a house is sold at the

asking price when a single buyer arrives; when multiple buyers meet the same seller, the house

is sold to the highest bidder. In that sense, our model draws from the competing auctions

literature (e.g., McAfee 1993, Peters and Severinov 1997, Julien et al. 2000, Albrecht et al.

2014, Lester et al. 2015). The distinguishing feature of the model is the financial constraints

3In July 2012, when the policy was implemented one Canadian dollar was approximately equal to one
US dollar.

4Jim Flaherty made the following statement in 2012 regarding house price appreciation and the corre-
sponding policy reform: “I remain concerned about parts of the Canadian residential real estate market,
particularly in Toronto. . . [and] we need to calm the. . . market in a few Canadian cities.” Source: “Canada
Tightens Mortgage-Financing Rules.” Wall Street Journal, June 21, 2012.
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faced by buyers which limit how much they can bid on a house.5 We assume that buyers

initially face a common income constraint that is not too restrictive, but that the introduction

of the million dollar policy imposes a minimum wealth requirement that further constrains

a subset of buyers.

We characterize the pre- and post-policy equilibria and derive a set of empirical predic-

tions. Under appropriate parameter restrictions, the post-policy equilibrium features some

sellers with asking prices exactly at the bidding limit imposed by the policy (i.e., $1M).

In some circumstances, this represents an increase in the set of equilibrium asking prices

relative to the pre-policy equilibrium. The intuition is that sellers can make up for the re-

duction in expected sales revenue in multiple offer situations by increasing the asking price

to extract a higher payment from the buyer in a bilateral situation. In other circumstances,

this represents a reduction in the set of equilibrium asking prices. Sellers can attract offers

from constrained buyers by lowering their asking price to the threshold. At the same time,

they continue to attract unconstrained buyers. Heightened bidding war intensity sometimes

pushes the sales price above the asking price, leading to a less severe reduction in sales prices.

As a final empirical prediction, we show that the consequences of the policy should be more

dramatic when a larger share of prospective buyers are constrained.

We test the model’s predictions using the 2010-2013 housing market transaction data

for single-family homes in the Greater Toronto Area, Canada’s largest housing market. The

Toronto market provides a particularly suitable setting for this study for two reasons. First,

home sellers in Toronto typically initiate the search process by listing the property and

specifying a particular date on which offers will be considered (often 5-7 days after listing).

This institutional practice fits well with our model of competing auctions and hence enables

us to explore the model’s implications about the strategic interactions between buyers and

sellers. Second, the million dollar policy was implemented in the midst of a housing boom

in Toronto. It induced a jump of the minimum downpayment from 5% to 20% as the

5Others have studied auction mechanisms with financially constrained bidders (e.g., Che and Gale,
1996a,b, 1998; Kotowski, 2016), but to our knowledge this is the first paper to consider bidding limits
in a model of competing auctions.
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sales price crossed the $1M threshold, creating an increase in required downpayment of

$150,000. The policy thus caused two discrete changes in the market: one at the time

the policy was implemented, and another at the $1M threshold. Figure 1 plots smoothed

percentage changes in sales volume before and after the change in MI policy by sale price.6

The substantial jump of sales volume at $1M in the wake of the policy is consistent with

strong incentives for bunching at the threshold, allowing for a nonparametric identification

of market responses not only in agents’ strategic decisions (listing and searching) but also in

transaction outcomes (price and time on the market).

Despite the appealing setting, estimating the policy’s impact is complicated by two fac-

tors. First, the implementation of the policy coincided with a number of accompanying

government interventions7 as well as a booming market. These confounding factors make it

difficult to isolate the effects of the policy. Second, housing composition may shift around the

time when the policy was implemented. If the quality of houses in the million dollar segment

depreciates over time, then a finding of lower asking price in the post-policy period cannot

be attributed to sellers’ response to the policy but rather the change of house characteristics.

Our solution relies on a two-stage estimation procedure. First, borrowing the distribution

regression approach from Chernozhukov et al. (2013) and leveraging the richness of our

data on house characteristics, we decompose the observed before-after-policy change in the

distribution of house prices (both asking and sales) into: (1) a component that is due to

changes in house characteristics; and (2) a component that is due to changes in sellers’ listing

strategy. The latter yields a quality-adjusted distribution of house prices that would have

6To create this figure, we count the number of sales in price bins of $10,000 and perform a local linear
regression on data points below and above $1M, separately. The pre-treatment period is the first six months
of 2012 and the post-treatment period is the first six months of 2013. The same calendar months are used
in both 2012 and 2013 to remove seasonal effects.

7As noted in Wachter et al. (2014), the macroprudential policies are “typically used in combination
with macroeconomic policy and direct interventions, complicating the challenge to attribute outcomes to
specific tools.” The law that implemented the million dollar policy also reduced the maximum amortization
period from 30 years to 25 years for insured mortgages; limited the amount that households can borrow
when refinancing to 80 percent (previously 85 percent); and limited the maximum gross debt service ratio
to 39 percent (down from 44 percent), where the gross debt service ratio is the sum of annual mortgage
payments and property taxes over gross family income. Source: “Harper Government Takes Further Action
to Strengthen Canada’s Housing Market.” Department of Finance Canada, June 21, 2012.
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prevailed in the post-policy period if the characteristics of houses stayed the same as in the

pre-period. Next, using this quality-adjusted distribution, we measure the effects of the MI

on listings and sales by comparing the observed post-policy distributions of asking price and

sales price to their counterfactual distributions assuming there were no change policy. To

this end, we adopt the recently developed bunching estimation approach (e.g., Chetty et al.

2011, Kleven and Waseem 2013, DeFusco et al. 2017).

Our main findings are the following. First, the distribution of asking price features a

large and sharp bunching right at the million dollar combined with holes both above and

below the million dollar. For example, in central Toronto, the additional homes that MI

adds to the million dollar price bin represents about 46% increase in homes that would have

been listed in this bin in the absence of the policy. Among these additional listings, about

two-thirds would have otherwise been listed below $995, 000; the remaining one-third would

have otherwise been listed above $1M. Both are consistent with sellers’ strategic responses

predicted by the theory.

Second, even though the sellers’ bunching responses in asking price are large, these re-

sponses are attenuated by price escalation in the event of multiple offers, resulting in a lower

degree of bunching at the sales price. In central Toronto, the number of sales that the MI

adds to the million dollar price bin represents about 96% increase in homes that would have

been sold in this region in the absence of the policy. The majority of bunching in sales price

come from homes that would have otherwise been sold above $1M. This suggests that the

policy cools down the targeted segment in the desired direction, although its magnitude is

dampened by the heightened competition between constrained and unconstrained bidders.

Third, consistent with the notion of heightened competition and increased buyer-seller

ratio below $1M, we find sharp, non-parametric evidence that housing markets right below

$1M experience a shorter time on the market and a larger fraction of above asking sales.

Fourth, the estimated bunching effects on asking and sales price are about twice in central

Toronto than in suburban Toronto. This evidence, along with the observation that buyers
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of million dollar homes in Toronto’s periphery are less financially constrained than their

counterparts in the urban core, aligns well with the theoretical prediction.

Overall, we find that the estimated market responses to the policy are remarkably con-

sistent with the model. Everything considered, the analysis points to the importance of

designing macroprudential policies that recognize strategic responses in sellers’ listing choice

and buyers’ search decision.

We emphasize that mortgage insurance is a key component of housing finance systems in

many countries, including the United States, the United Kingdom, the Netherlands, Hong

Kong, France, and Australia. These countries share two important institutional features

with Canada: (i) the requirement that most lenders insure high loan-to-value (LTV) mort-

gages, and (ii) the central role of the government in providing such insurance.8 These

features give policymakers “exceptional power to affect housing finance through the key role

of government-backed mortgage insurance” (Krznar and Morsink, 2014). Thus the lessons

learned in this paper are important not only for Canada, but also for many nations around

the world.

The paper proceeds as follows. The next section discusses related literature. In Section

3 we provide an overview of the Canadian housing market and the institutional details of

the mortgage insurance market. In section 4 we develop a theoretical model, characterize

the directed search equilibrium, and derive a set of empirical implications. In sections 5 and

6 we discuss the data, outline our empirical strategy, and present our results on the impact

of the MI policy. Section 7 concludes.

8The MI market in the U.S., for example, is dominated by a large government-backed entity, the Federal
Housing Administration (FHA), and MI is required for all loans with a LTV ratio greater than 80 percent.
Indeed, in the US, over 1.1 trillion US dollars of mortgages are insured by the government-backed Federal
Housing Administration (FHA) and the US Congress is reviewing proposals that would make the US MI
system similar to that used in Canada. See Option 3 in “Reforming America’s Housing Finance Market,
A Report to Congress.” February 2011. The US Treasury and the US Department of Housing and Urban
Development.
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2 Literature Review

Financial constraints (sometimes called “credit” or “borrowing” or “collateral” or “financing”

or “liquidity” constraints) are a recurring theme of the literature on the housing markets.

While much of the literature has focused on the impact of financial constraints on individual

households’ consumption-savings decision (Hayashi, 1985; Hurst and Lusardi, 2004; Lehn-

ert, 2004) and rent versus buy choice (Linneman and Wachter, 1989; Gyourko et al., 1999),

less work examines the macro consequences of financial constraints on house price, trading

volume, and price volatility. Our paper is closely linked to the latter. On the theory front, a

typical form of financial constraints that has been modelled is down-payment requirements.

Focusing on repeated homebuyers, Stein (1995) demonstrates that tight down-payment con-

straints can result in lower house prices and fewer transactions. Extending Stein’s idea into

a dynamic setting, Ortalo-Magne and Rady (2006) show that down-payment constraints de-

lay some households’ first home purchase and force other to buy a house smaller than they

would like, resulting in a lower house price. Both Stein (1995) and Ortalo-Magne and Rady

(2006) take a partial equilibrium approach as they assume fixed housing supply. Favilukis

et al. (2017) are among the first that explicitly incorporates housing production response

in modelling the impact of financial constraints. In dong so, they show that in a general

equilibrium setting the only way that a relaxation of financial constraints could lead to a

housing boom is through a reduction in the housing risk premium. Our paper adds to this

literature by taking an alternative approach to the general equilibrium analysis. In particu-

lar, we provide a search theoretical analysis to model buyers and sellers’ search and listing

decisions in a two-sided housing market. In this regard, our work is also close to a line of

literature on search and matching in housing (e.g., Wheaton 1990, Krainer 2001, Williams

1995, Genesove and Han 2012). Unlike our paper, none of these search papers incorporates

credit market imperfections. In this sense, the theoretical analysis in our paper is the first

search theoretical analysis that models the role of financial constraints in housing markets.9

9For other studies that consider downpayments or credit frictions in housing markets, see Corbae and
Quintin (2015), Landvoigt et al. (2015), Fuster and Zafar (2016), Duca et al. (2016), and Acolin et al. (2016).
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Turning to the empirical literature, financial constraints are defined much more broadly.10

In understanding the recent financial crisis, much focus has been placed on examining the role

of financial constraints in explaining housing booms and busts. For example, Vigdor (2006),

Duca et al. (2011), Berkovec et al. (2012) show that a relaxation of financial constraints

results in a boom in house prices; Agarwal et al. (2017) show that increased intensity of

mortgage renegotiations leads to reduced foreclosure rates and higher house price growth;

Agarwal et al. (2017) show that credit supply restrictions can lead to adverse selection in the

market for mortgage loans; Mian and Sufi (2009) link the expansion of mortgage credit to

higher initial house prices and subsequent elevated default rates, which further lead to price

declines; and Demyanyk and Van Hemert (2011) demonstrate that extreme credit constraints

can result in a lower housing prices and fewer transactions because negative equity prevents

some households from moving. Our empirical work differs from this body of work in the

form of financial constraints, the level of the data, and the nature of the outcomes. As

we emphasize above, the micro-level of the transaction data, combined with the natural

experimental opportunity arising from the mortgage insurance restriction, greatly helps us

in isolating the casual effect of the MI policy on the asking price, sales price and time on the

market. We also exploit the geographical variation in the effects of the MI policy and linked

that to the share of constrained households.

Finally, our paper contributes to work on macroprudential policies. Due to the carnage

created by the Great Recession, macroproudential tools transformed from esoteric and rarely

considered ideas, to prominent policy vehicles Blanchard et al. (2010). Naturally, with

emergence of these policies, a growing literature developed to investigate their effects. For

example, Allen et al. (2016) use loan-level data to examine the macroprudential policies on

mortgage contract characteristics and mortgage demand. In contrast, our paper examines

the policy impact on housing market outcomes.

10They take the form of downpayment constraints (Lamont and Stein, 1999; Genesove and Mayer, 2001),
debt-to-income ratio (Demyanyk and Van Hemert, 2011), borrowing against existing housing equity (Mian
and Sufi, 2011), mortgage contract terms (Berkovec et al., 2012), and innovations in easing the access to
mortgages (Vigdor, 2006).
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3 Background

Since 2000 Canada has experienced one of the world’s largest modern house price booms,

with prices surging 150 percent between 2000 and 2014. Moreover, in contrast to other

large housing markets like those in the U.S., homes in Canada suffered only minor price

depreciation during the Great Recession. Figure 2 plots the national house price indices

for Canada and the U.S.11 As home prices in Canada continued to escalate post-financial

crisis, the Canadian government and outside experts became increasingly concerned that

rapid price appreciation would eventually lead to a severe housing market correction.12 To

counter the potential risks associated with the house price boom, the Canadian government

implemented four major rounds of housing market macroprudential regulation between July

2008 and July 2012.13 Interventions included increasing minimum down payment require-

ments (2008); reducing the maximum amortization period for new mortgage loans (2008,

2011, 2012); reducing the borrowing limit for mortgage refinancing (2010, 2011, 2012); in-

creasing homeowner credit standards (2008, 2010, 2012); and limiting government-backed

high-ratio14 MI to homes with a purchase price of less than $1M (the focus of this paper).

3.1 Mortgage Insurance in Canada

Mortgage insurance is a financial instrument used to transfer mortgage default risk from the

lender to the insurer. For federally regulated financial institutions in Canada, insurance is

legally required for any mortgage loan with an LTV ratio higher than 80 percent.15 Mort-

11These are monthly repeat-sales house price indices. Sources: Teranet (Canada) and S&P Case-Shiller
(U.S.) downloaded from Datastream (series ID numbers: USCSHP20F and CNTNHPCMF).

12In 2013, Jim Flaherty, Canada’s Minister of Finance from February 2006 to March 2014, stated: “We
[the Canadian government] have to watch out for bubbles - always - . . . including [in] our own Canadian
residential real estate market, which I keep a sharp eye on.” Further, Robert Shiller observed in 2012 that
“what is happening in Canada is kind of a slow-motion version of what happened in the U.S.” Sources: “Jim
Flaherty vows to intervene in housing market again if needed.” The Globe and Mail, November 12, 2013;
and “Why a U.S.-style housing nightmare could hit Canada.” CBC News, September 21, 2012.

13For a summary of the changes made to the MI rules in Canada, see Box 2 on page 24 of the Bank of
Canada’s December 2012 Financial System Review.

14A high-ratio mortgage loan is defined as one with a LTV ratio above 80 percent.
15Most provincially regulated institutions are subject to this same requirement. Unregulated institutions,

in contrast, are not required to purchase MI. The unregulated housing finance sector in Canada, however,
accounts for only five percent of all Canadian mortgage loans (Crawford et al., 2013).
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gage originators can purchase MI from private insurers, but the largest mortgage insurer in

Canada is the government-owned Canada Mortgage and Housing Corporation (CMHC). The

Canadian government provides guarantees for both publicly and privately insured mortgages,

and therefore all mortgage insurers are subject to financial market regulation through the

Canadian Office of the Superintendent of Financial Institutions (OFSI). The MI requirement

for high LTV mortgage loans and the influence of the government in the market for MI make

it a potentially effective macroprudential tool.

3.2 The Canadian Mortgage Insurance Regulation of 2012

In June of 2012, the Canadian federal government passed a law that limited the availability

of government-back MI for high LTV mortgage loans to homes with a purchase price of less

than one million Canadian dollars. To purchase a home for $1M or more, the 2012 regulation

effectively imposes a minimum down payment requirement of 20 percent.16 The aim of the

regulation was twofold: to increase borrower creditworthiness and curb price appreciation in

high price segments of the housing market. The law was announced on June 21, 2012, and

effected July 9, 2012. Moreover, anecdotal evidence suggests that the announcement of the

MI policy was largely unexpected by market participants.17

4 Theory

To understand how the MI policy affects strategies and outcomes in the million dollar seg-

ment of the housing market, we present a two-sided search model that incorporates auction

mechanisms and financially constrained buyers. We characterize a directed search equilib-

rium and describe the implications of the MI policy on transaction outcomes and the social

welfare derived from housing market transactions.

16Under the new rules, even OFSI-regulated private insurers are prohibited from insuring mortgage loans
when the sales price is greater than or equal to $1M and the LTV ratio is over 80 percent (see Crawford
et al. 2013 and Krznar and Morsink 2014).

17See “High-end mortgage changes seen as return to CMHC’s roots.” The Globe and Mail, June 23, 2012
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4.1 Environment

Agents. There is a fixed measure B of buyers, and a measure of sellers determined by free

entry. Buyers and sellers are risk neutral. Each seller owns one indivisible house that she

values at zero (a normalization). Buyer preferences are identical; a buyer assigns value v > 0

to owning the home. No buyer can pay more than some fixed u ≤ v, which can be viewed

as a common income constraint (e.g., debt-service constraint).

MI policy. The introduction of the MI policy causes some buyers to become more

severely financially constrained. Post-policy, a fraction Λ of buyers are unable to pay more

than c, where c < u. Parameter c corresponds to the $1M threshold, and Λ reflects the

share of potential buyers with insufficient wealth from which to draw a 20 percent down

payment. Parameter restrictions c < u ≤ v can be interpreted as follows: all buyers may

be limited by their budget sets, but some are further financially constrained by a binding

wealth constraint (i.e., minimum down payment constraint) following the implementation of

the MI policy. Buyers with financial constraint c are hereinafter referred to as constrained

buyers, whereas buyers willing and able to pay up to u are termed unconstrained.

Search and matching. The matching process is subject to frictions which we model

with an urn-ball meeting technology. Each buyer meets exactly one seller. From the point of

view of a seller, the number of buyers she meets is a random variable that follows a Poisson

distribution. The probability that a seller meets exactly k = 0, 1, . . . buyers is

π(k) =
e−θθk

k!
, (1)

where θ is the ratio of buyers to sellers and is often termed market tightness. The probability

that exactly j out of the k buyers are unconstrained is

φk(j) =

(
k

j

)
(1− λ)jλk−j, (2)

which is the probability mass function for the binomial distribution with parameters k and
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1− λ, where λ is the share of constrained buyers. Search is directed by asking prices in the

following sense: sellers post a listing containing an asking price, p ∈ R+, and buyers direct

their search by focusing exclusively on listings with a particular price. As such, θ and λ

are endogenous variables specific to the group of buyers and sellers searching for and asking

price p.

Price determination. The price is determined in a second-price sealed-bid auction.

The seller’s asking price, p ∈ R+, is interpreted as the binding reserve price. If a single

bidder submits an offer at or above p, he pays only p. In multiple offer situations, the bidder

submitting the highest bid at or above p wins the house but pays either the second highest

bid or the asking price, whichever is higher. When selecting among bidders with identical

offers, suppose the seller picks one of the winning bidders at random with equal probability.

Free entry. The measure of sellers is determined by free entry so that overall market

tightness is endogenous.18 Supply side participation in the market requires payment of a

fixed cost x, where 0 < x < c. It is worthwhile to enter the market as a seller if and only if

the expected revenue exceeds the listing cost.

A brief discussion of some of the features of the model is in order. First, since financial

constraint c is intended to represent the maximum ability to pay among buyers affected

by the MI policy, parameter c corresponds to the $1M threshold (relative to the seller’s

reservation value) and Λ reflects the share of potential buyers with insufficient wealth from

which to draw a 20 percent down payment.19 If the parameter values for v, u and c are

small, the scope of the model shrinks to a narrow segment of the market around $1M.

Second, the determination of prices in practice differs in some ways from the simple

auction mechanism modelled here. In a bilateral meeting, it is quite common for the buyer

and seller to negotiate a final transaction price slightly below the asking price. In contrast,

18Entry on the supply side of the market is a common approach to endogenizing housing market tightness
in directed search models with auctions (e.g., Albrecht et al., 2016 and Arefeva 2016). The alternative
(i.e., buyer entry) would be less straightforward in our context given that the demand side of the market is
homogeneous pre-policy but heterogeneous thereafter.

19Since the MI policy effectively imposes a 20 percent down payment requirement when the purchase price
is $1M or more, c more precisely represents a bidding limit of $999, 999 (less the seller’s minimum acceptable
sales price).
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we assume that the asking price effectively represents a firm commitment to a minimum

price. We rely on this assumption for deriving meaningful implications about the effect

of the MI policy on asking prices. Embellishing the price determination mechanism20 may

allow for transaction prices below asking prices without compromising the the asking price-

related implications of the theory. Such extensions, however, would add considerably to the

analytical complexity of the model.

Finally, entry on the supply side of the market is a common approach to endogenizing

housing market tightness in directed search models with auctions (e.g., Albrecht et al.,

2016 and Arefeva 2016). The alternative (i.e., buyer entry) would be less straightforward

in our context given that the demand side of the market is homogeneous pre-policy but

heterogeneous thereafter. With post-policy entry decisions on the demand side, buyers would

self-select into the market in such a way that the effects of the policy would be mitigated or

even non-existent. More specifically, suppose for a moment that both types of buyers face

entry decisions subject to an entry fee or search cost. Provided there are sufficiently many

unconstrained potential market participants, unconstrained buyers would enter the market

until they reach indifference about market participation: their expected payoff would equal

the participation cost. Because constrained buyers are outbid by unconstrained buyers,

the expected payoff for a constrained buyer would be strictly less than the cost of market

participation. It follows that constrained buyers would optimally choose not to participate

in this segment of the housing market and consequently the post-policy equilibrium would

be indistinguishable from the pre-policy equilibrium with identically unconstrained buyers.

In contrast, we show in the analysis that follows that the MI policy does affect equilibrium

strategies and outcomes when entry decisions are imposed on the supply side of the market.

20See Albrecht et al., 2016 and Han and Strange, 2016 for more sophisticated pricing protocols that can
account for sale prices both above and below the asking price.
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4.2 Equilibrium

4.2.1 The Auction

When a seller meets k buyers, the auction mechanism described above determines a game

of incomplete information because bids are sealed and bidding limits are private. In a

symmetric Bayesian-Nash equilibrium, it is a dominant strategy for buyers to bid their

maximum amount, c or u. When p > c (p > u), bidding limits preclude constrained (and

unconstrained) buyers from submitting sensible offers.

4.2.2 Expected payoffs

Expected payoffs are computed taking into account the matching probabilities in (1) and

(2). These payoffs, however, are markedly different depending on whether the asking price,

p, is above or below a buyer’s ability to pay. Each case is considered separately in Appendix

A.1. In the submarket associated with asking price p and characterized by market tightness

θ and buyer composition λ, let V s(p, λ, θ) denote the sellers’ expected net payoff. Similarly,

let V c(p, λ, θ) and V u(p, λ, θ) denote the expected payoffs for constrained and unconstrained

buyers.

For example, if the asking price is low enough to elicit bids from both unconstrained and

constrained buyers, the seller’s expected net payoff is

V s(p ≤ c, λ, θ) = −x+ π(1)p+
∞∑
k=2

π(k)

{
[φk(0) + φk(1)] c+

k∑
j=2

φk(j)u

}
.

Substituting expressions for π(k) and φk(j) and recognizing the power series expansion of

the exponential function, the closed-form expression is

V s(p ≤ c, λ, θ) = −x+ θe−θp+
[
1− e−θ − θe−θ

]
c

+
[
1− e−(1−λ)θ − (1− λ)θe−(1−λ)θ

]
(u− c).

The second term reflects the surplus from a transaction if she meets only one buyer. The
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third and fourth terms reflect the surplus when matched with two or more buyers, where the

last term is specifically the additional surplus when two or more bidders are unconstrained.

The expected payoff for a buyer, upon meeting a particular seller, takes into account the

possibility that the seller meets other constrained and/or unconstrained buyers as per the

probabilities in (1) and (2). The expected payoff for a constrained buyer in this case is

V c(p ≤ c, λ, θ) = π(0)(v − p) +
∞∑
k=1

π(k)φk(0)
v − c
k + 1

and the closed-form expression is

V c(p ≤ c, λ, θ) =
e−(1−λ)θ − e−θ

λθ
(v − c) + e−θ(c− p).

The first term is the expected surplus when competing for the house with other constrained

bidders; the last term reflects the possibility of being the only buyer. Note that whenever an

unconstrained buyer visits the same seller, the constrained buyer is outbid with certainty and

loses the opportunity to purchase the house. Finally, the expected payoff for an unconstrained

buyer can be similarly derived to obtain

V u(p ≤ c, λ, θ) = π(0)(v − p) +
∞∑
k=1

π(k)

[
φk(0)(v − c) +

k∑
j=1

φk(j)
v − u
j + 1

]

=
1− e−(1−λ)θ

(1− λ)θ
(v − u) + e−(1−λ)θ(u− c) + e−θ(c− p).

The first term is the expected surplus when competing for the house with other unconstrained

bidders, and the second term is the additional surplus when competing with constrained

bidders only. In that scenario, the unconstrained bidder wins the auction by outbidding

the other constrained buyers, but pays only c in the second-price auction. The third term

represents the additional payoff for a monopsonist. Closed-form solutions for the other cases

are derived in Appendix A.1.
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4.2.3 Directed Search

Agents perceive that both market tightness and the composition of buyers depend on the

asking price. To capture this, suppose agents expect each asking price p to be associated

with a particular ratio of buyers to sellers θ(p) and fraction of constrained buyers λ(p). We

will refer to the triple (p, λ(p), θ(p)) as submarket p. When contemplating a change to her

asking price, a seller anticipates a corresponding change in the matching probabilities and

bidding war intensity via changes in tightness and buyer composition. This is the sense in

which search is directed. It is convenient to define V i(p) = V i(p, λ(p), θ(p)) for i ∈ {s, u, c}.

Definition 1. A directed search equilibrium (DSE) is a set of asking prices P ⊂ R+; a

distribution of sellers σ on R+ with support P, a function for market tightness θ : R+ →

R+ ∪ +∞, a function for the composition of buyers λ : R+ → [0, 1], and a pair of values

{V̄ u, V̄ c} such that:

1. optimization:

(i) sellers: ∀p ∈ R+, V s(p) ≤ 0 (with equality if p ∈ P);

(ii) unconstrained buyers: ∀p ∈ R+, V u(p) ≤ V̄ u (with equality if θ(p) > 0 and

λ(p) < 1);

(iii) constrained buyers: ∀p ∈ R+, V c(p) ≤ V̄ c (with equality if θ(p) > 0 and λ(p) > 0);

where V̄ i = maxp∈P V
i(p) for i ∈ {u, c}; and

2. market clearing:

∫
P
θ(p) dσ(p) = B and

∫
P
λ(p)θ(p) dσ(p) = ΛB.

The definition of a DSE is such that for every p ∈ R+, there is a θ(p) and a λ(p). Part

1(i) states that θ is derived from the free entry of sellers for active submarkets (i.e., for

all p ∈ P). Similarly, parts 1(ii) and 1(iii) require that, for active submarkets, λ is derived
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from the composition of buyers that find it optimal to search in that submarket. For inactive

submarkets, parts 1(ii) and 1(iii) further establish that θ and λ are determined by the optimal

sorting of buyers so that off-equilibrium beliefs are pinned down by the following requirement:

if a small measure of sellers deviate by posting asking price p 6∈ P, and buyers optimally sort

among submarkets p ∪ P, then those buyers willing to accept the highest buyer-seller ratio

at price p determine both the composition of buyers λ(p) and the buyer-seller ratio θ(p). If

neither type of buyer finds asking price p acceptable for any positive buyer-seller ratio, then

θ(p) = 0, which is interpreted as no positive measure of buyers willing to search in submarket

p. The requirement in part 1(i) that V s(p) ≤ 0 for p 6∈ P guarantees that no deviation to an

off-equilibrium asking price is worthwhile from a seller’s perspective. Finally, part 2 of the

definition makes certain that all buyers search.

4.2.4 Pre-Policy Directed Search Equilibrium

We first consider the initial setting with identically unconstrained buyers by setting Λ = 0.21

Buyers in this environment direct their search by targeting the asking price that maximizes

their expected payoff given bidding limit u. Because the buyer correctly anticipates the free

entry of sellers, the search problem can be written

V̄ u = max
p,θ

V u(p, 0, θ) s.t. p ≤ u and V s(p, 0, θ) = 0. (P0)

We construct a DSE with a single active submarket with asking price and market tightness

determined by the solution to problem P0, denoted {p0, θ0}.22 If the first constraint is slack,

the solution is a pair {p∗u, θ∗u} satisfying the following first-order condition and the second

21A DSE when Λ = 0 is defined according to Definition 1 except that we impose λ(p) = 0 for all p ∈ R+

and ignore condition 1(iii).
22The same active submarket can instead be determined by solving the seller’s price posting problem and

imposing free entry. Specifically, sellers set an asking price to maximize their expected payoff subject to
buyers achieving their market value V̄ u. The seller must also take into account buyers’ bidding limit, u. The
seller’s asking price setting problem is therefore

max
p,θ

V s(p, 0, θ) s.t. p ≤ u and V u(p, 0, θ) = V̄ u. (P′0)
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constraint:

x = [1− e−θ∗u − θ∗ue−θ
∗
u ]v (3)

θ∗ue
−θ∗up∗u = [1− e−θ∗u − θ∗ue−θ

∗
u ](v − u). (4)

If the first constraint in problem P0 binds, the solution is instead {u, θu}, where θu satisfies

the free entry condition V s(u, 0, θu) = 0.

The following proposition provides a partial characterization of the pre-policy DSE con-

structed using the solution to problem P0.

Proposition 1. There is a DSE with P = {p0}, θ(p0) = θ0 and V̄ u = V u(p0, 0, θ0).

As buyers’ ability to pay approaches their willingness to pay (i.e., as u → v), the equi-

librium asking price tends to zero (i.e., p0 = p∗u → 0), which is the seller’s reservation value.

This aligns with standard results in the competing auctions literature in the absence of bid-

ding limits (McAfee, 1993; Peters and Severinov, 1997; Albrecht et al., 2014; Lester et al.,

2015). When buyers’ bidding strategies are somewhat limited (i.e., p0 = p∗u ≤ u < v), sellers

set a higher asking price to capture more of the surplus in a bilateral match. The equilibrium

asking price is such that the additional bilateral sales revenue (the left-hand side of equation

(4) exactly compensates for the unseized portion of the match surplus when two or more

buyers submit offers but are unable to bid up to their full valuation (the right-hand size of

equation (4). Equilibrium expected payoffs in this case are independent of u. When buyers’

bidding strategies are too severely restricted (i.e., p0 = u < p∗u), the seller’s choice of asking

price is constrained by the limited financial means of prospective buyers. Asking prices in

equilibrium are then set to the maximum amount, namely u. In this case, a seller’s expected

share of the match surplus is diminished, and consequently fewer sellers choose to participate

in the market (i.e., θu > θ∗u).
23

23Using (3) and (4) to define p∗u, inequality u < p∗u can be written
[
1− e−θ∗u

]
u < x. Moreover, the free

entry condition V s(u, 0, θu) = 0 is equivalent to
[
1− e−θu

]
u = x. Combining this equality with the previous

inequality yields θu > θ∗u.
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4.2.5 Post-Policy Directed Search Equilibrium

As in section 4.2.4, an active submarket with p ≤ c is determined by an optimal search

strategy. The search problem of a constrained buyer takes into account the participation of

both sellers and unconstrained buyers:

V̄ c = max
p,λ,θ

V c(p, λ, θ) s.t. p ≤ c, V s(p, λ, θ) = 0 and V u(p, λ, θ) ≥ V̄ u. (P1)

Let {p1, λ1, θ1} denote the solution to problem P1 when V̄ u is set equal to the maximized

objective of problem P0. If the first constraint is slack, the solution is {p∗c , λ∗c , θ∗c} satisfying

the last two constraints with equality and a first-order condition derived in Appendix A.3.

If the first constraint binds, the solution is instead {c, λc, θc}, where λc and θc satisfy the

free entry condition V s(c, λc, θc) = 0 and an indifference condition for unconstrained buyers

V u(c, λc, θc) = V̄ u. As long as the aggregate share of constrained buyers, Λ, does not exceed

λ1, we can construct an equilibrium with two active submarkets associated with asking prices

p0 and p1.

Proposition 2. Suppose Λ ≤ λ1. There is a DSE with P = {p0, p1}, λ(p0) = 0, θ(p0) = θ0,

λ(p1) = λ1, θ(p1) = θ1, V̄ c = V c(p1, λ1, θ1) and V̄ u = V u(p0, 0, θ0) = V u(p1, λ1, θ1).

Intuitively, some unconstrained buyers prefer to search alongside constrained buyers be-

cause they can out-bid them. If the fraction of constrained buyers is not too high (i.e.,

Λ < λ∗c), the DSE features partial pooling (i.e., only some unconstrained buyers search for

homes priced at p1 while the rest search in submarket p0). As Λ→ λ1, it can be shown that

σ(p0)→ 0 and the DSE converges to one of full pooling (i.e., all buyers and sellers participate

in submarket p1). Finally, if Λ > λ1, market clearing (part 2 of Definition 1) is incompatible

with unconstrained buyer indifference between these two submarkets, which begets the pos-

sibility of full pooling with unconstrained buyers strictly preferring to pool with constrained

buyers. We sacrifice completeness for conciseness and convenience by restricting attention

to settings with Λ ≤ λ1.24

24We construct fully pooling DSE numerically when Λ > λ1 by increasing V̄ u above the maximized

19



For many sets of parameter values satisfying 0 < x < c < u ≤ v, the financial constraint

p ≤ c in problem P1 binds and a consequence of the MI policy is therefore a mass of asking

prices and sales prices at threshold c. These and other empirical implications are the focus

of the next section.

4.3 Empirical Predictions

This section summarizes the consequences of the MI policy by comparing the pre- and post-

policy directed search equilibria. There are four possible cases to consider depending on

whether the financial constraints p ≤ u and p ≤ c bind in problems P0 and P1. In this

section we focus on the case where the relevant financial constraint is slack in problem

P0 but binds in problem P1. In other words, we consider the possibility that pre-existing

financial constraints are not restrictive enough to affect expected payoffs and seller entry in

the pre-policy equilibrium, but that the additional financial constraint imposed by the MI

policy is sufficiently severe to bind some households. Under this assumption, the equilibrium

asking prices are p0 = p∗u and p1 = c. There are still two possible subcases: (i) p∗u ≤ c and

(ii) p∗u > c.

Under the restrictions discussed above, the model has several testable predictions that

we bring to the data in Section 6. Some of these predictions rely on additional analytical

results, which are summarized in the following lemma:

Lemma 1. (i) σ(p0) = B/θ0 in the pre-policy DSE. In the post-policy DSE,

σ(p0) =
(λ1 − Λ)B
λ1θ0

and σ(p1) =
ΛB
λ1θ1

. (5)

(ii) p0 ≤ p1 implies (1− λ1)θ1 ≤ θ0.

(iii) p0 > p1 implies θ0 < (1− λ1)θ1 < θ1.

objective of problem P0 until the share of constrained buyers in the submarket that solves problem P1 is
exactly Λ. A thorough analysis of such DSE, however, would require abandoning the analytical convenience
of block recursivity (i.e., the feature that equilibrium values and optimal strategies do not depend on the
overall composition of buyers).
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Prediction 1. The MI policy motivates some sellers to change their asking price from p0

to p1. This represents an increase (decrease) in the set of asking asking prices if p∗u ≤ c

(p∗u > c).

As per Propositions 1 and 2, the set of asking prices changes from just P = {p0} pre-

policy to P = {p0, p1} post-policy. Following the introduction of the policy, some or all

sellers find it optimal to target buyers of both types by asking price p1 = c. The measure of

sellers participating in submarket p0 is lower post-policy (see part (i) of Lemma 1). Both the

introduction of homes listed at p1 and the smaller measure of homes listed at p0 contribute to

the increase (decrease) in the set of equilibrium asking prices when p0 = p∗u ≤ c (p0 = p∗u > c).

Prediction 1 suggests that the MI can generate large behavioural response among sellers

in the segments nearby $1M. It induces some sellers who would have otherwise listed below

$1M ( p0 ≤ c) to raise the asking price. It also induces some sellers who would have otherwise

listed above $1M (p0 > c) to reduce the asking price. Together, these create an excess mass

of sellers listing their homes at the $1M. Figures 11 and 12 provide a graphical illustration

for each of these two cases.

Prediction 2. The MI policy decreases (increases) these sellers’ matching probabilities with

unconstrained buyers, resulting in a lower (higher) incidence of price escalation up to u if

p0 ≤ p1 (p0 > p1).

If p1 = c < p0, an implication of the indifference condition for unconstrained buyers

between submarkets p0 and p1 when Λ ≤ λ1 is θ0 < (1 − λ1)θ1 (see part (iii) of Lemma

1). It follows that the MI policy shifts the Poisson distribution that governs the random

number of unconstrained buyers meeting each particular seller in the sense of first-order

stochastic dominance. The MI policy therefore increases the overall share of listed homes

selling for u. If instead p0 ≤ c = p1, the indifference condition for unconstrained buyers

implies the opposite, namely θ0 ≥ (1−λ1)θ1 (see part (ii) of Lemma 1). In that case, the MI

policy lowers the probability of multiple offers from unconstrained buyers. Figures 13 and

14 present graphical illustrations.
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Prediction 3. Predictions 1 and 2 have opposing effects on equilibrium sales prices, resulting

in a less dramatic impact of the MI policy on sales prices relative to asking prices.

The MI policy’s effect on sales prices is mitigated by the auction mechanism and the

pooling of buyers. When sellers’ equilibrium price-posting strategies are such that asking

prices increase (decrease), the equilibrium search strategies of unconstrained buyers imply a

lower (higher) incidence of price escalation up to u, resulting in a relatively smaller excess

mass of sales price at the $1M, compared to the asking price. Figures 15 and 16 present

graphical illustrations.

Prediction 4. The share of total post-policy market activity in submarket p1 is increasing

in Λ.

Given that λ1 and θ1 are independent of Λ, σ(p1) increases linearly with Λ (see part

(i) of Lemma 1). In contrast, the post-policy measure of sellers in submarket p0 decreases

linearly with Λ. It follows that higher values of Λ are associated with a higher relative share

of activity in submarket p1. Prediction 4 therefore implies a more dramatic impact of the

the MI policy on asking and sales prices at bidding limit c if it constrains a larger fraction of

potential buyers. To show this, Figures 17 and 18 plot the expected asking price and sales

price as a function of the fraction of constrained buyers.

4.4 Welfare Discussion

To explore the normative implications of the MI policy, we compare the pre- and post-

policy social surplus generated by housing market activity. As described in section 3, the

MI policy was introduced to counter the potential risks associated with a house price boom.

Characterizing the potential benefits to the financial system is beyond the scope of the model.

The normative analysis that follows should instead be viewed as a description of the direct

welfare implications of the MI policy on housing market participants.

The welfare of market participants (i.e., total social surplus net of listing costs, normalized
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by dividing by the fixed measure of buyers, B) can be written

W (θ) =

[
1− e−θ

]
v − x

θ
. (6)

The welfare maximizing level of market activity is implemented when the ratio of buyers

to sellers is θ∗u, which is achieved in the benchmark pre-policy DSE whenever p0 = p∗u ≤ u.

The post-policy DSE, however, features a change in the total number of sales as θ1 is not

generally equal to θ0. For example, when p1 = c < p0 ≤ u, part (iii) of Lemma 1 states that

θ0 < θ1. The decline in overall market activity implies a reduction in the welfare of market

participants (i.e. a decline in total social surplus net of listing costs). With free-entry on

the supply side, these welfare costs are borne by the share of buyers that are financially

constrained by the MI policy.25

5 Data

Our data set includes all transactions of single-family houses in the Greater Toronto Area

from January 1 2010 to December 31 2013. For each transaction, we observe asking price,

sales price, days on the market, transaction date, location, as well as detailed housing char-

acteristics. Since the MI policy took effect in July of 2012, the pre-policy period is defined as

July 2011 to June 2012 and the post-policy period is defined as July 2012 to June 2013. For

the purposes of assigning a home to a pre- or post-policy date, we use the date the house

was listed.

Table 1 contains summary statistics for detached, single-family homes in the city of

Toronto. Our data include 15, 882 observations in the pre-policy period and 13, 577 obser-

vations in the post-policy period. The mean sales price in Toronto was $723, 060.60 in the

pre-policy period and $761, 472.48 in the post-policy period, reflecting continued rapid price

growth for single family houses. Our focus is on homes near the $1M threshold, which corre-

sponds to approximately the 86th percentile of the pre-policy price distribution. There were

25When Λ > λ1, the unconstrained buyers in fact benefit at the expense of the constrained buyers.
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955 homes sold within $100,000 of $1M in the pre-policy period, and 941 in the post-policy

period.

Table 2 reports the same statistics for central Toronto. Homes in the central district

are substantially more expensive: a million dollar home represents the median home in

central Toronto; while a million dollar home lies at the top 5th percentile of the house price

distribution in suburban Toronto (not shown). Nearly 60 percent of all homes sold pre-policy

in Toronto for a price within $100,000 of $1M are located in central Toronto.

6 Empirical Evidence

We now present empirical tests of the four predictions derived in Section 4. Given that the

policy was targeted at cooling the million dollar segment, our main analysis is restricted to

central Toronto, where a home of $1M represent a median home. We begin in Subsection 6.1

with tests of Predictions 1 and 3. In Subsection 6.2 presents a test of Prediction 2. Later,

in Section 6.3, we repeat the same analysis for suburban Toronto, where home buyers for

million dollar homes are considered less financially constrained. This, combined with the

evidence in central Toronto, is interpreted as the evidence for Prediction 4.

6.1 Predictions 1 and 3 : The Effects of MI on Asking Price and Sales Price

The main implication of the model is that the MI leads to a sharp bunching of the asking

price and sales price at the million dollar, with the asking price effect larger than the sales

price. To measure these market responses, we compare the observed distribution of post-

policy price changes (relative to the pre-policy period) to a counterfactual distribution of

price changes. The key assumption underlying our strategy is that we have an accurate

estimate of the counterfactual distribution that mimics the empirical distribution assuming

there were no shifts in housing characteristics and no policy changes. We do so in two steps.

First, we construct a counterfactual price distribution that would have prevailed if there were

no composition changes of housing stock in each price segment. Based on this, we further

construct a counterfactual distribution in the absence of the MI policy.
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6.1.1 First stage: controlling for housing composition

When taking the predictions to the data, one challenge we face is that the model is featured

with homogenous housing while in reality houses differ along many dimensions. If houses

listed or sold in the $1M segment in the post-policy year are generally in better condition

than in the previous year, then the difference between the actual price distribution and

the counterfactual price distribution could simply reflect the changes in the composition of

housing rather than the policy effect. We rule out this concern by leveraging the richness

of our data to flexibly control for the complete set of observed house characteristics to back

out a counterfactual distribution of of house prices that would have prevailed period if the

characteristics of houses in the post-period were the same as in the pre-period.

Let Yt denote the (asking or sale) price of a house and let Xt denote the characteristics of

a house that affect prices, for t = 0, the pre-policy period, and t = 1, the post-policy period.

The conditional distribution functions FY0|X0(y|x) and FY1|X1(y|x) describe the stochastic

assignment of prices to houses with characteristics x in each of the periods. Let FY 〈0|0〉 and

FY 〈1|1〉 represent the observed distribution of house prices in each period. We are interested

in FY 〈1|0〉, the counterfactual distribution of house prices that would have prevailed in the

post-period if the characteristics of the houses in the post-period were as in the pre-period.

We can decompose the observed change in the distribution of house prices:

FY 〈1|1〉 − FY 〈0|0〉︸ ︷︷ ︸
∆O=Observed

=
[
FY 〈1|1〉 − FY 〈1|0〉

]︸ ︷︷ ︸
∆X=Composition

+
[
FY 〈1|0〉 − FY 〈0|0〉

]︸ ︷︷ ︸
∆S=Price Structure

. (7)

Since the counterfactual is not observed, it must be estimated. Following Chernozhukov

et al. (2013), we use the plug-in rule:

F̂Y 〈1|0〉 =

∫
F̂Y1|X1(y|x)dF̂X0(x)

To estimate the covariate distribution, we use the empirical distribution function. The

25



estimator for F̂Y 〈1|0〉 is obtained with a distribution regression. Namely,

F̂Y1|X1(y|x) = Λ
(
x′1β̂1(y)

)
, for each y ∈ Y.

To implement this estimator, we create a set of cut-off prices, {y1, . . . , yJ}. For each cut-off,

we create a dummy variable 1[Yi ≤ yj] indicating whether a house i had a price below the

threshold yj. The function Λ(·) is a link function. If Λ(·) is the identity function, then the

procedure requires estimating a series of regressions (ie, linear probability models), one for

each threshold j ∈ J . The coefficients β1(y) vary by threshold, providing a flexible way to

estimate the conditional distribution function F̂Y1|X1(y|x). Once the β̂(y) are obtained, the

counterfactual distribution is estimated by averaging over the predicted values in using the

FX0(x) distribution:

F̂Y 〈1|0〉 =

∫
Λ
(
x′0β̂1(y)

)
dF̂X0(x).

In practice, we define cut-off prices using a grid with intervals of $5,000.26 The covariate

vector contains indicators for district, month, the number of rooms, whether the basement

is finished, and the housing type (detached, semi-detached). Since all of our covariants can

be represented by indicators, we choose to use the identity function for Λ(·), which results

in a linear probability model.27

Figure 3 examines the distribution of asking price for pj = 500, 000, . . . , 1, 400, 000. In

panel A, we plot the estimated CDF function for the pre- and post-policy period. The post-

period CDF, representedd by the green line, lays everywhere below the pre-period survivor,

indicating that all the housing market segments experienced a boom. In panel B, we plot

the difference between the two CDF functions. If the CDFs were the same pre- and post-

policy for a given bin, the difference would show up as a zero in the figure. We find that the

26Smaller price bins allow more flexibility in estimating the underlying house price distribution, while
larger bins allow for more precise estimates. All of our results are robust to reasonable deviations from the
$5,000 interval.

27We have also assessed robustness to using a logit link-function and the results are essentially the same.
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actual difference in CDFs is always below zero and upward sloping, indicating that houses

in general are becoming more expensive over time and this effect is larger for lowered priced

segments than for higher ones.

Following equation (7), we then decompose the difference in CDFs into two components:

(i) price difference due to shifting of housing characteristics in each segment (Panel C); and

(ii) price difference due to changes in sellers’ listing strategy caused by the MI (Panel D).

The latter is the market response that we aim to measure. As shown in Panel C, the price

change caused by shifting of housing characteristics is small in magnitude and relatively flat.

In contrary, Panel D shows that the price change caused by sellers’ listing strategy generally

increases smoothly with price, with a relatively large jump at the $1M threshold. Given the

minimal composition effects, nearly all of the shifts in the observed distribution of asking

price are driven by sellers’ listing strategy.

Figure 4 examines the distribution of sales price for pj = 500, 000, . . . , 1, 400, 000. One

key difference between the sales price in Figure 4 and the asking price in Figure 3 is that the

former is much smoother than the latter. The lack of smoothness in the asking price can be

attributed to a behavioural response in seller’s listing strategy, which caused a fair degree

of heaping at certain thresholds in the asking price. As before, Figure 4 shows that (1) the

growth exhibits a discrete upward jump at the $1M threshold, although the magnitude of the

jump is smaller than the jump in asking price; and (2) little of the shifts in the distribution

of the sales price is driven by the composition change.

Together, the discrete jumps at the $1M in asking and sales price presented in Figures

3 and 4 are consistent with the model. However, this evidence alone does not distinguish

the policy effects from the impact of other common macro forces around the time when the

MI policy was implemented and hence is not sufficient for supporting the implications from

the theory. To isolate the MI policy’s effects on the price distribution, we now turn to the

bunching estimation.
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6.1.2 Second stage: bunching estimation

With the estimated ∆̂S(yj) = F̂Y 〈1|0〉(yj)− F̂Y 〈0|0〉(yj) in hand, we are now ready to estimate

the MI effects on asking and sales price. Our estimation is built on the bunching approach

recently developed in public finance (Chetty et al. 2011 and Kleven and Waseem 2013),

with two slight modifications. First, while previous work on bunching estimation has almost

exclusively focused on the densities (e.g., Best and Kleven 2017, DeFusco et al. 2017), we

choose to estimate the CDFs. The underlying idea is the same, but the latter allows us to

present a more transparent decomposition of the market response to the policy. Nevertheless,

we also present a graphical analysis in densities to facilitate our discussion. Second, we take

a further step to consider the difference in CDFs to control for heaping at certain thresholds

both before and after the MI was implemented. As shown in Figure 3, heaping in asking

price could be due to factors such as marketing convention and psychology bias, which may

not be well-captured even after including round number effects.

Specifically, we estimate the counterfactual distribution by fitting a flexible polynomial

to the empirical distribution, excluding data in a range around $1M.

∆̂S(yj) =

p∑
i=0

βi · yij + βA · 1[yj = $1M ] + βB · 1[yj = $1M − h]

+
L∑
l=1

γl · 1[yj = $1M − h · (1 + l)] +
R∑
r=1

αr · 1[yj = $1M + h · r] + εj (8)

where p is order of polynomial, L is the excluded region to the left of bin just below the cut

off, R is the excluded region to the right of the cut off, and h is the bin size.

28



The total observed jump at the cut-off $1M is28

∆̂S($1M)− ∆̂S($1M − h)︸ ︷︷ ︸
Jump at threshold

=

p∑
i=0

β̂i · yi$1M −
p∑
i=0

β̂i · yi$1M−h︸ ︷︷ ︸
Counterfactual

+ β̂A − β̂B︸ ︷︷ ︸
Total Policy Response

(9)

It is important to note that the interpretation of the total jump is not all causal. Since

housing boom is larger in the lower-priced segments, we would expect that the difference in

the CDFs to have a jump as we move from the bins from the left to the $1M bin, even in

the absence of the MI. This jump is considered as “counterfactual” and therefore should not

be attributed to the policy.

After teasing out the “counterfactual jump,” we are left with β̂A − β̂B, which is the

policy response we aim to measure. A finding of β̂A > 0 is consistent with “bunching from

above” since it indicates that sellers that would otherwise locate in bins above $1M now

move down to locate in the $1M bin. A finding of β̂B < 0, on the other hand, is consistent

with “bunching from below” since it indicates that sellers that would otherwise locate below

the $1M bin now move up to locate in the $1M bin. Both responses are induced by the MI

policy. Because of this, the counterfactual omits an excluded region to the left, L, and to

the right, R, that are part of the policy response.

The two sources of response described above imply two adding up constraints. In par-

ticular, sellers locating from adjacent bins below the threshold come from bins in the region

L. Thus, “bunching from below” should equal the the responses from lower adjacent bins,

implying

RB ≡ βB −
L∑
l=1

γl · 1[yj = $1M − h · (1 + l)] = 0 (10)

28Note that there is no residual component in equation (8) since, through the excluded region, every bin
has its own dummy and the fit is exact. We observe the population of house sales during this time, thus, the
error term in (8) reflects specification error in our polynomial fit rather than sampling variation. We discuss
the computation of our standard errors of our estimates in more detail below.
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And similarly for those sellers coming from above the threshold:

RA ≡ βA −
R∑
r=1

αr · 1[yj = $1M + h · r] = 0 (11)

Since the number of excluded bins to the below and above are unknown, our estimation

procedure is iterative: we estimate a series of equation (8) with different values of L and

R in the set L,R ∈ {2, 3, 4} and test the restrictions. If our procedure does not identify a

unique set of L and R, we choose the specification that minimizes the sum of the squared

restriction errors: R,L = min(RB2
+ RA2

). This occurs becomes sometimes we are unable

to statistically distinguish between 3 and 4 bins, for example.29

The counterfactual is defined by
∑p

i=0 βi · yij, which approximates the difference in

F̂Y 〈1|0〉(yj) − F̂Y 〈0|0〉(yj) away from the excluded region. To construct this counterfactual,

there are still two choices to make: the window of the global polynomial (how many bins on

either side of the threshold to include) and the order. We take a pragmatic approach. First,

we take a window of 15 bins on either side of the cut-off, which amounts to considering

houses in the interval from $915,000 to $1075000, and use a third order polynomial. We

choose to take a relatively narrow region around the threshold and a low order polynomial

due to the issues raise by Gelman and Imbens (2014) with high-order global polynomials in

similar context. We then consider a series of robustness checks to assess the sensitivity of

our estimates to these choices.

6.1.3 Results

Figure 5 shows a graphical test of Prediction 1 based on the estimates of equation (8).

In particular, we plot both the observed changes in CDFs of the asking price, ∆̂S(yj) =

F̂Y 〈1|0〉(yj)− F̂Y 〈0|0〉(yj), and the estimated counterfactual changes. The solid connected line

plots the observed changes, with each dot representing the difference in the CDFs before

and after the policy for each $5,000 price bin indicated on the x-axis. The dashed connected

29It is important to note that our estimation does not depend on the two adding up constraints. As shown
in the unreported tables, our results are extremely robust to the different choices of L and R.
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line plots the counterfactual changes estimated as described in Section 6.1.2. The vertical

dashed lines mark the lower limit of the bunching region ($975, 000) and the upper limit of

the bunching region ($1, 020, 000). Note that the CDF in each price bin is relative to the

CDF in the year before the MI was implemented.

The pattern shown in the figure is striking. Consistent with Prediction 1, the empirical

distribution exhibits a sharp discontinuity at the $1M threshold: moving from the $995, 000

bin to the $1M bin leads to a 0.96% increase in the mass of homes listed. In contrast, the

increase in the counterfactual distribution between these two bins is minor — only about

0.06%. Thus much of the bunching we observed at the $1M is driven by the MI policy.

Figure 6 further presents a graphical test of Prediction 1 based on the difference in densi-

ties. The spike in homes listed at the $1M is accompanied by dips in homes listed to the right

of and to the left of $1M. The spike reflects excess of homes listed in [$995, 000, $1, 000, 000]

after the implementation of the MI. The dips reflect missing homes that would have been

listed away from the $1M in the absence of the MI.

Column (1) of Table 2 reports the bunching estimates. Standard errors are calculated

using the bootstrapping procedure.30 We find that in total roughly 0.9% homes that would

have otherwise been listed away from $1M were shifted to the $1M bin. In other words,

the number of listings that the MI adds to the million dollar price bin represents about 46%

increase in homes that would have been listed in this bin in the absence of the policy. Among

these additional listings, about two-thirds are shifted from below $995, 000. The remaining

one-third come from above $1M. Both estimates are significant at the five-percent level.

Interpreting these estimates in the context of our model, this means that the MI induces

some sellers who would have otherwise listed homes below $1M to increases the asking price

to $1M. By doing so, these sellers extract more surplus in the bilateral situation, which

compensates for the losses that would have incurred in the multiple offer situation when the

MI is imposed. On the other hand, the MI also induces some other sellers who would have

30We calculate standard errors for all estimated parameters by bootstrapping from the observed sample,
drawing 100 random samples with replacement and re-estimating the parameters at each iteration.
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otherwise listed homes above $1M to lower their asking price to $1M. Doing so allows these

sellers to attract both constrained and unconstrained buyers.

Columns (2)-(7) provide a variety of robustness checks. Column (2) expands the sample

window to 20 bins on each side of $1M. Column (3) narrows the sample window to 10 bins

on each side of $1M. Column (4) includes a fourth-order, rather than third-order polyno-

mial used in the baseline specification. Column (5) expands the exclusive region on each

side of $1M. Column (6) imposes the constraints in equations (10) and (11). Column (8)

includes a set of indicators for asking price at the round-numbers that are multiples of 5, 000.

Reassuringly, the bunching estimates are extremely robust, suggesting that our results are

not driven by the assumptions on the sample window, functional form, and the choice of

exclusive region.

Turning to Prediction 3, we report the bunching estimates for the sales price in Table 3,

with a visualization of the estimates shown in Figures 7 and 8. Two clear patterns emerge.

First, while there is a sharp bunching of sales price at the $1M, the magnitude of bunching

is much smaller than the asking price. This is consistent with Prediction 3. Specifically, we

find that about 0.3% homes that would have been sold elsewhere are shifted to the $1M bin.

In other words, the MI adds about about 96% increase in homes that would have otherwise

been sold in this region.

Second, while the theory shows that the bunching of sales at the million dollar could come

from bins both above and below, Table 3 indicates that the majority of these additional sales

are shifted from above, namely [$1, 000, 000, $1, 020, 000]. The dominance of “bunching from

above” suggests that the million dollar home segment is cooled down by the policy in the

desired direction, although the affected portion of the market is small. The small affected

portion is not surprising given that the policy was targeted at a very specific segment.

Moreover, the additional sales shifted to the $1M bin represent 14.7% of homes that would

have been otherwise sold within [$1, 000, 000, $1, 020, 000]. Thus, despite a seemingly small

number of sales being affected, the quantity effect relative to the size of the potentially

affected segment of the market is quite large.
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6.1.4 Robustness Checks

One legitimate concern is that our bunching estimates might be just picking up threshold

effects in pricing that are caused, for example, by psychological biases around the $1M , or

other macro forces that affected the housing market at the time when the MI was imple-

mented. We have already addressed this concern in two ways. First, we examine the the

post-policy CDF relative to the CDF in the pre-policy year. To the extent that the thresh-

old effect in pricing caused by the non-MI-related factors that is time invariant, it would be

differenced our in our estimation. Second, we allow for round number fixed effects to capture

potential rounding in the price data. As shown in Column (7) of Tables 2 and 3, this has

almost no effect on the estimates in the baseline specification.

In this section, we present two “placebo” tests as an additional check. First, we designate

two years prior to the implementation of the MI as “placebo” years. Specifically, we estimate

the counterfactual CDF of house price for July 2011 - June 2012 relative to the CDF in

the prior year and then compare this counterfactual CDF difference to the observed CDF

difference. The middle row of Table 4 presents the results. The total observed jump of at

$1M is 0.0018 for the asking price and −0.0012 for the sales price, both are statistically

insignificant. Thus, we do not find any significant discontinuity in the difference of CDF

prior to the implementation of the MI, as expected.

Second, we designate each alternative cut-off point that is well below or above $1M as

a “placebo” thresholds. The idea is that since the MI policy was targeted at the $1M

segment, it should not affect houses priced well below or above the million dollar threshold

and therefore home buyers in those segments face no changes in their financial constraints.

To investigate this, for each alternative cut-off point at $25,000 intervals from $700,000 to

$1,400,000, we repeat our bunching estimation using this alternative cut-off as a threshold.

Table 4 displays the estimates of the total observed jump at the cut-off. Reassuringly, most

of the estimates are statistically insignificant, suggesting that the million dollar bunching

estimate is unlikely to be driven by unobserved market forces. The only estimate that is

economically large is at at the $850,000 threshold for the asking price. However, its effect is
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much reduced once we control for round number effects.

Overall, Table 4 reports 41 placebo regressions where we repeat our main analysis for

either a placebo year and/or a placebo threshold. Out of the 41 bunching estimates, only 3

are statistically significant and only 1 is economically large. Most of estimates are statistically

insignificant and economically small. Taken individually, each estimate alone may not be

sufficient to rule out the concern about psychology bias or other non-MI related factors. But

taken together, the weight of the evidence provides compelling evidence that the bunching

estimates in Section 6.1.3 provide an accurate measure of the effect of the MI policy on the

asking and sales price.

6.2 Prediction 2: The Effects of MI on Sale Premium and Time on the Market

The evidence uncovered so far is consistent with the model’s main predictions that the MI led

to a sharp bunching in the million dollar segment, with a smaller bunching for the sales price

than for the asking price. The smaller degree of bunching for the sales price, according to

the model, is due to the mitigation by increased bidding intensity. In particular, Prediction

2 indicates that the MI drives up market tightness just below the million dollar, leading to

a discrete decline in bidding intensity at the million dollar. In other words, we would expect

that MI creates a hot market for houses listed right below the $1M, reflected by higher

probability of being sold above asking and shorter time on the market.

We test this prediction by employing a regression discontinuity design. The variables of

interest are (1) the probability a house being sold above asking price conditional on being

listed at p = yAj ; and (2) the probability a house was on the market for more than two weeks

condition on being listed at p = yAj , where two weeks is the median time on the market in

the sample. We construct these two variables in three steps.

First, using the distribution approach described in Section 6.1.1, we estimate ŜY 〈1|1〉(y
A
j ) =

1 − F̂Y 〈1|1〉(yAj ), the probability of a house being listed for at least yAj . Holding the distri-

bution of housing characteristics the same as the pre-policy period, we then estimate the

counterfactual probability ŜY 〈1|0〉(y
A
j ) = 1− F̂Y 〈1|0〉(yAj ).

34



Second, we estimate RSY 〈1|1〉(y
A
j , y

S ≥ yA), the joint probability that a house being listed

for at least yAj and being sold above asking price. Similarly, we estimate R̂SY 〈1|0〉(y
A
j , y

S ≥

yA), the counterfactual joint probability, holding the distribution of housing characteristics

the same as the pre-policy period.

Finally, using the estimated probabilities above, we derive the conditional probability

that a house is sold above asking conditional on being listed at least yAj in the pre-policy

period:

ŜY 〈0|0〉(y
S ≥ yA|yAj ) =

R̂SY 〈0|0〉(y
A
j , y

S ≥ yA)

ŜY 〈0|0〉(yj)

and a counterfactual post-policy conditional probability:

ŜY 〈1|0〉(y
S ≥ yA|yAj ) =

R̂SY 〈1|0〉(y
A
j , y

S ≥ yA)

ŜY 〈1|0〉(yj)

Using this three-step procedure, we impute the two variables of interest: (1) ŜY 〈1|0〉(y
S ≥

yA|yAj ) − ŜY 〈0|0〉(y
S ≥ yA|yAj ), the change in the probability of being sold above asking;

and (2) ŜY 〈1|0〉(D ≥ 14|yAj ) − ŜY 〈0|0〉(D ≥ 14|yAj ), the change of in the probability of being

on the market for more than two weeks. Both are constructed relative to the pre-policy

period, conditional on being listed for at least yAj and holding the distribution of the housing

characteristics constant.

To test Prediction 2, we plot each of the two constructed variables above as a function

of the asking price, along with a third order polynomial fits separately to each side of the

$1M. Figures 9 and 10 show clear visual evidence that is consistent with Prediction 2. The

probability of being sold above asking exhibits a discrete downward jump at the $1M, with

an upward sloping curve to the left of the $1M. The probability of being on the market

for more than two weeks exhibits a discrete upward jump at the $1M, with a downward

sloping curve to the left of the $1M. Together, they reflect higher bidding intensity right

below $1M induced by the MI, consistent with sellers’ listing strategy and buyers’ pooling
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response predicted by the theory.

6.3 Prediction 4: Cross-Market Analysis

Prediction 4 involves the cross-market comparison. It indicates that the MI policy effects

on the asking and sales price should be stronger for markets where prospective buyers are

more constrained by the policy. We test this prediction by comparing the MI effects in two

submarkets of the Greater Toronto Area: central Toronto and suburban Toronto. While

we do not have direct information on home buyers’ financial constraints, we collect the

information on the district level income and age for these two submarkets. As noted in

the section 5, million dollar homes are at the median of house price distribution in central

Toronto and about the top 5th percentile of house price distribution in suburban Toronto.

It seems plausible to assume that average income of million dollar homes are at the median

of income distribution in central Toronto and are at the top 5th percentile of the income

distribution in suburban Toronto. Table ? confirms that the former is about half of the size

of the latter. Thus we would should expect that the MI policy has less substantial impact

on sellers’ asking price and the final sales price in suburban Toronto.

Focusing on suburban Toronto, Tables 5 and 6 present the estimates of the MI policy effect

on the asking price and sales price, respectively. For the asking price, the policy response

in suburban Toronto is about half of that in central Toronto. For the sales price, the policy

response is less than one third of that in central Toronto. This evidence, combined with the

fact that buyers in suburban markets are less constrained by MI limitation, is strongly in

line with Prediction 4.

7 Conclusion

In this paper we explore the price implications of financial constraints in a booming housing

market. This is of particular interest and relevance because mortgage financing is a channel

through which policymakers in many countries are implementing macroprudential regulation.

In Canada, one such macroprudential policy was implemented in 2012 that obstructed access
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to high LTV mortgage insurance for homes purchased at a price of $1M or more. We exploit

the policy’s $1M threshold by combining bunching estimation and distribution regression to

estimate the effects of the policy on prices and other housing market outcomes.

To facilitate interpretation of the empirical results, we first characterize a directed search

equilibrium in a setting with competing auctions and exogenous bidding limits. We model

the million dollar policy as an additional financial constraint affecting a subset of prospective

buyers. We show that sellers respond strategically to the policy by adjusting their asking

prices to $1M, which attracts both constrained and unconstrained buyers. Consequently,

the policy’s impact on final sales prices is dampened by the heightened bidding intensity.

Using housing transaction data from the city of Toronto, we find that the million dollar

policy results in a large degree of bunching at the $1M for asking price and a smaller degree

of bunching at the $1M for sales price. We also find evidence that the incidence of bidding

wars and below average time-on-the-market are relatively higher for homes listed just below

the $1M threshold, which agrees with the theoretical results. Overall, the MI policy appears

to have cooled the housing market just above the $1M threshold and at the same time heated

up the market just below.
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Table 1: Summary Statistics: City of Toronto

Pre-Policy Post-Policy

Asking Sales Asking Sales

All Homes

Mean 718659.44 723060.60 767393.53 761472.48
25th Pct 429900.00 431000.00 459900.00 461000.00
50th Pct 559925.00 573000.00 599000.00 601000.00
75th Pct 798900.00 812000.00 849000.00 850000.00

N 15882.00 15882.00 13577.00 13577.00
Median Duration 9.00 9.00 11.00 11.00

1M Percentile 0.86 0.84 0.84 0.83

Homes 0.9-1M
N 521.00 588.00 556.00 592.00

Median Duration 8.00 8.00 9.00 9.00
Mean Price 967261.99 943465.15 967719.59 945917.91

Homes 1-1.1M
N 255.00 367.00 269.00 349.00

Median Duration 8.00 8.00 10.00 9.00
Mean Price 1073743.82 1044251.96 1075028.44 1044355.36
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Table 2: Regression Buncing Estimates for Post policy period

Asking Price

(1) (2) (3) (4) (5) (6) (7)

Jump at cut-off 0.0095∗∗ 0.0095∗∗ 0.0095∗∗ 0.0095∗∗ 0.0095∗∗ 0.0095∗∗ 0.0095∗∗

(0.0028) (0.0028) (0.0028) (0.0028) (0.0028) (0.0028) (0.0028)

Total Response 0.0089∗∗ 0.0088∗∗ 0.0086∗∗ 0.0089∗∗ 0.0089∗∗ 0.0096∗∗ 0.0076∗∗

(0.0026) (0.0027) (0.0025) (0.0026) (0.0026) (0.0032) (0.0027)

From Below -0.0056∗∗ -0.0049∗∗ -0.0048∗∗ -0.0051∗∗ -0.0057∗∗ -0.0061∗∗ -0.0056∗∗

(0.0019) (0.0019) (0.0016) (0.0017) (0.0021) (0.0022) (0.0019)

From Above 0.0033∗ 0.0039∗∗ 0.0038∗∗ 0.0038∗∗ 0.0032∗ 0.0035∗ 0.0020
(0.0018) (0.0018) (0.0017) (0.0018) (0.0019) (0.0020) (0.0021)

Observations 9111 9111 9111 9111 9111 9111 9111
Excluded Bins:

J 3 3 3 3 4 3 3
K 3 3 3 3 4 3 3

Tests of Fit:

B −
∑J

j β
j
B -.0018 -.00091 -.0004 -.0014 -.0035 -5.6e-17∗ -.0017

(.0018) (.0021) (.0013) (.0015) (.0041) (0) (.0018)

A−
∑K

k β
k
A .00056 .00098 .00033 .00097 .0019 -4.2e-17∗ .0017

(.0011) (.0015) (.00072) (.0012) (.0024) (.) (.0013)
Joint p-val. 0.59 0.78 0.89 0.61 0.52 . 0.36

Impact:

∆ Houses at cutoff 44.2 43.9 43.0 44.2 44.4 48.0 38.0
%∆ at cutoff 46.1 45.6 44.2 46.1 46.3 49.9 37.2
% from Above 108.2 115.6 96.7 114.9 95.0 114.8 108.0
% from Below 35.1 30.4 29.4 32.3 32.8 38.2 33.2

Specifications:

Poly. Order 3 3 3 4 3 3 3
Window 15 20 10 15 15 15 15
Other Constrained Round Number

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05

42



Table 3: Regression Buncing Estimates for Post policy period

Sales Price

(1) (2) (3) (4) (5) (6) (7)

Jump at cut-off 0.0032∗∗ 0.0032∗∗ 0.0032∗∗ 0.0032∗∗ 0.0032∗∗ 0.0032∗∗ 0.0032∗∗

(0.0014) (0.0014) (0.0014) (0.0014) (0.0014) (0.0014) (0.0014)

Total Response 0.0028∗∗ 0.0027∗∗ 0.0028∗∗ 0.0028∗∗ 0.0028∗∗ 0.0027 0.0037∗∗

(0.0013) (0.0013) (0.0013) (0.0013) (0.0013) (0.0017) (0.0015)

From Below -0.00051 -0.0012 -0.0010 -0.0012 -0.00066 -0.00039 -0.00040
(0.0018) (0.0019) (0.0016) (0.0017) (0.0020) (0.0015) (0.0018)

From Above 0.0023 0.0015 0.0017 0.0016 0.0021 0.0023 0.0033
(0.0020) (0.0022) (0.0018) (0.0019) (0.0022) (0.0023) (0.0023)

Observations 9111 9111 9111 9111 9111 9111 9111
Excluded Bins:

J 2 2 2 2 3 2 2
K 4 4 4 4 5 4 4

Tests of Fit:

B −
∑J

j β
j
B .00023 .00033 .00027 .00028 -.00051 0∗ .00021

(.00089) (.00093) (.00085) (.00088) (.0016) (0) (.00089)

A−
∑K

k β
k
A -.000021 -.0019 -.001 -.001 -.00092 -2.1e-17∗ -.00061

(.0039) (.0047) (.0031) (.0037) (.0058) (.) (.0039)
Joint p-val. 0.96 0.90 0.92 0.94 0.93 . 0.97

Impact:

∆ Houses at cutoff 13.9 13.4 13.7 13.8 13.8 13.3 18.7
%∆ at cutoff 96.9 91.3 95.2 96.3 96.6 92.8 196.1
% from Above 14.7 9.43 11.5 10.8 11.5 14.7 19.0
% from Below 5.24 12.3 10.3 11.7 4.41 4.03 4.22

Specifications:

Poly. Order 3 3 3 4 3 3 3
Window 15 20 10 15 15 15 15
Other Constrained Round Number

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05
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Table 4: Regression Buncing Estimates for Post policy period (Central Toronto)

Post-Policy Difference Pre-Policy Difference

(1) (2) (3) (4)
Asking Sales Asking Sales

800000 0.0013 -0.00091 0.0037 0.00021
(0.0037) (0.0014) (0.0030) (0.0014)

825000 0.00035 0.00014 -0.00047 0.0020
(0.00053) (0.0013) (0.00072) (0.0016)

850000 0.0053∗ 0.00046 0.00091 0.00038
(0.0031) (0.0014) (0.0027) (0.0014)

875000 0.00022 0.0042∗∗ 0.00039 0.00053
(0.00052) (0.0017) (0.00050) (0.0013)

900000 0.0013 0.0023 0.0068∗∗ 0.0011
(0.0031) (0.0016) (0.0032) (0.0012)

925000 0.00020 0.0018 -0.000030 -0.00096
(0.00031) (0.0016) (0.00032) (0.0015)

950000 0.0032 0.00013 -0.00087 -0.00065
(0.0022) (0.0011) (0.0022) (0.0010)

1000000 0.0095∗∗ 0.0032∗∗ 0.0018 -0.0012
(0.0028) (0.0014) (0.0031) (0.0011)

1050000 0.00076 0.0015 0.0036∗∗ 0.00019
(0.0019) (0.0011) (0.0016) (0.00082)

1075000 0.00023 -0.00010 -0.00022 0.00095
(0.00024) (0.0010) (0.00019) (0.00091)

1100000 0.0042 -0.00070 0.0039∗∗ 0.00037
(0.0032) (0.00066) (0.0017) (0.00068)

1125000 0.00084 -0.00026 0.00035 0.00072
(0.00066) (0.00095) (0.00022) (0.00095)

1150000 0.00016 0.00076 -0.00029 -0.0013∗

(0.0015) (0.00094) (0.0014) (0.00077)

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05
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Table 5: Regression Buncing Estimates for Post policy period (Suburban Toronto)

Asking Price

(1) (2) (3) (4) (5) (6) (7)

Jump at cut-off 0.0045∗∗ 0.0045∗∗ 0.0045∗∗ 0.0045∗∗ 0.0045∗∗ 0.0045∗∗ 0.0045∗∗

(0.0012) (0.0012) (0.0012) (0.0012) (0.0012) (0.0012) (0.0012)

Total Response 0.0042∗∗ 0.0042∗∗ 0.0041∗∗ 0.0042∗∗ 0.0042∗∗ 0.0046∗∗ 0.0039∗∗

(0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0013) (0.0012)

From Below -0.0027∗∗ -0.0023∗∗ -0.0023∗∗ -0.0024∗∗ -0.0028∗∗ -0.0030∗∗ -0.0027∗∗

(0.00075) (0.00077) (0.00069) (0.00070) (0.00080) (0.00086) (0.00076)

From Above 0.0015∗∗ 0.0018∗∗ 0.0018∗∗ 0.0018∗∗ 0.0015∗∗ 0.0016∗∗ 0.0012
(0.00067) (0.00072) (0.00064) (0.00067) (0.00071) (0.00075) (0.00076)

Observations 29459 29459 29459 29459 29459 29459 29459
Excluded Bins:

J 3 3 3 3 4 3 3
K 3 3 3 3 4 3 3

Tests of Fit:

B −
∑J

j β
j
B -.001 -.00056 -.00035 -.0008 -.0022 -6.9e-18∗ -.001

(.00064) (.0007) (.00051) (.00057) (.0014) (.) (.00064)

A−
∑K

k β
k
A .00014 .00026 .000072 .00034 .00066 0∗ .00036

(.00038) (.00052) (.00026) (.0004) (.00081) (.) (.00049)
Joint p-val. 0.31 0.68 0.79 0.37 0.23 . 0.28

Specifications:

Poly. Order 3 3 3 4 3 3 3
Window 15 20 10 15 15 15 15
Other Constrained Round Number

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05
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Table 6: Regression Buncing Estimates for Post policy period (Suburban Toronto)

Sales Price

(1) (2) (3) (4) (5) (6) (7)

Jump at cut-off 0.0011∗∗ 0.0011∗∗ 0.0011∗∗ 0.0011∗∗ 0.0011∗∗ 0.0011∗∗ 0.0011∗∗

(0.00053) (0.00053) (0.00053) (0.00053) (0.00053) (0.00053) (0.00053)

Total Response 0.00082∗ 0.00081 0.00085∗ 0.00082∗ 0.00082 0.00018 0.0011∗

(0.00050) (0.00051) (0.00049) (0.00050) (0.00050) (0.00053) (0.00062)

From Below 0.000036 -0.000064 0.000074 -0.000028 0.000022 0.00017 0.000055
(0.00067) (0.00074) (0.00057) (0.00058) (0.00074) (0.00063) (0.00067)

From Above 0.00086 0.00075 0.00093 0.00080 0.00084 0.00035 0.0011
(0.00069) (0.00074) (0.00057) (0.00060) (0.00076) (0.00058) (0.00087)

Observations 29459 29459 29459 29459 29459 29459 29459
Excluded Bins:

J 2 2 2 2 3 2 2
K 2 2 2 2 3 2 2

Tests of Fit:

B −
∑J

j β
j
B .00027 .00029 .00024 .00028 .00026 0∗ .00027

(.00039) (.00039) (.00037) (.00039) (.00089) (0) (.00039)

A−
∑K

k β
k
A -.001 -.001 -.001 -.001 -.0012 0∗ -.0013

(.00054) (.00054) (.00053) (.00053) (.0009) (0) (.00068)
Joint p-val. 0.15 0.15 0.17 0.15 0.45 . 0.15

Specifications:

Poly. Order 3 3 3 4 3 3 3
Window 15 20 10 15 15 15 15
Other Constrained Round Number

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05
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Figure 3: Observed Distribution and Decomposition of Asking Prices
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Figure 4: Observed Distribution and Decomposition of Sales Prices
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Figure 5: Observed Cumulative Distribution and Decomposition of Asking Prices
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Figure 6: Observed Density Distribution of Asking Prices
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Figure 7: Observed Cumulative Distribution and Decomposition of Sales Prices

C

A
B

-.0
35

-.0
3

-.0
25

-.0
2

-.0
15

925000 950000 975000 1000000 1025000 1050000 1075000
 

Conterfactual Observed

Note: A is the policy response from above, B is the policy response
from Below, and C is the counterfactual change. Vertical Dashed
lines indicate excluded region.

Figure 8: Observed Density Distribution of Sales Prices
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Figure 9: Probability of Sales above Asking Conditional on Asking Price
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Figure 10: Probability of Being on Market for ≥ 2 weeks Conditional on Asking Price

.0
7

.0
75

.0
8

.0
85

.0
9

925000 950000 975000 1000000 1025000 1050000 1075000
 

Polynomial fit Observed

51



A Theory: Details and Derivations

A.1 Expected Payoffs

Expected payoffs are markedly different depending on whether the asking price, p, is above
or below buyers’ ability to pay. Consider each scenario separately.

Case I: p ≤ c. The seller’s expected net payoff as a function of the asking price in this
case is

V s
I (p, λ, θ) = −x+ π(1)p+

∞∑
k=2

π(k)

{
[φk(0) + φk(1)] c+

k∑
j=2

φk(j)u

}
.

Substituting expressions for π(k) and φk(j) and recognizing the power series expansion of
the exponential function, the closed-form expression is

V s
I (p, λ, θ) = −x+ θe−θp+

[
1− e−θ − θe−θ

]
c

+
[
1− e−(1−λ)θ − (1− λ)θe−(1−λ)θ

]
(u− c).

(A.1)

The second term reflects the surplus from a transaction if she meets only one buyer. The
third and fourth terms reflect the surplus when matched with two or more buyers, where the
last term is specifically the additional surplus when two or more bidders are unconstrained.

The unconstrained buyer’s expected payoff is

V u
I (p, λ, θ) = π(0)(v − p) +

∞∑
k=1

π(k)

[
φk(0)(v − c) +

k∑
j=1

φk(j)
v − u
j + 1

]
.

The closed-form expression is

V u
I (p, λ, θ) =

1− e−(1−λ)θ

(1− λ)θ
(v − u) + e−(1−λ)θ(u− c) + e−θ(c− p). (A.2)

The first term is the expected surplus when competing for the house with other unconstrained
bidders; the second term is the additional surplus when competing with constrained bidders
only; the last term reflects the possibility of being the only buyer.

The constrained buyer’s expected payoff is

V c
I (p, λ, θ) = π(0)(v − p) +

∞∑
k=1

π(k)φk(0)
v − c
k + 1

.

The closed-form expression is

V c
I (p, λ, θ) =

e−(1−λ)θ − e−θ

λθ
(v − c) + e−θ(c− p). (A.3)
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The first term is the expected surplus when competing for the house with other constrained
bidders; the last term reflects the possibility of being the only buyer.

Case II: c < p ≤ u. The seller’s expected net payoff is

V s
II(p, λ, θ) = −x+

∞∑
k=1

π(k)φk(1)p+
∞∑
k=2

π(k)
k∑
j=2

φk(j)u.

The closed-form expression is

V s
II(p, λ, θ) = −x+ (1− λ)θe−(1−λ)θp+

[
1− e−(1−λ)θ − (1− λ)θe−(1−λ)θ

]
u. (A.4)

The second term reflects the surplus from a transaction if she meets exactly one uncon-
strained buyer; the third term is the surplus when matched with two or more unconstrained
buyers.

The unconstrained buyer’s expected payoff is

V u
II(p, λ, θ) = π(0)(v − p) +

∞∑
k=1

π(k)

[
φk(0)(v − p) +

k∑
j=1

φk(j)
v − u
j + 1

]
.

The closed-form expression is

V u
II(p, λ, θ) =

1− e−(1−λ)θ

(1− λ)θ
(v − u) + e−(1−λ)θ(u− p). (A.5)

The first term is the expected surplus when competing for the house with other unconstrained
bidders; the second term reflects additional surplus arising from the possibility of being the
exclusive unconstrained buyer.

Since constrained buyers are excluded from the auction, their payoff is zero:

V c
II(p, λ, θ) = 0. (A.6)

Case III: p > u. In this case, all buyers are excluded from the auction. Buyers’ payoffs
are zero, and the seller’s net payoff is simply the value of maintaining ownership of the home
(normalized to zero) less the listing cost, x:

V s
III(p, λ, θ) = −x, V u

III(p, λ, θ) = 0 and V c
III(p, λ, θ) = 0. (A.7)

Using the expected payoffs in each of the different cases, define the following value func-
tions: for i ∈ {s, u, c},

V i(p, λ, θ) =


V i
III(p, λ, θ) if p > u,
V i
II(p, λ, θ) if c < p ≤ u,
V i
I (p, λ, θ) if p < c.

(A.8)
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A.2 Algorithm for Constructing Pre-Policy DSE

Solution to Problem P0: Ignoring (for now) the financial constraint p ≤ u, the solution to
problem P0 satisfies the following first-order condition with respect to θ and the free-entry
condition:

x = [1− e−θ∗u − θ∗ue−θ
∗
u ]v

x = θ∗ue
−θ∗up∗ + [1− e−θ∗u − θ∗ue−θ

∗
u ]u,

which combine to yield

p∗u =
[1− e−θ∗u − θ∗ue−θ

∗
u ](v − u)

θ∗ue
−θ∗u

. (A.9)

Now taking into account the constraint imposed by bidding limit u, the solution is p =
min{u, p∗u} and θ satisfying V s(p, 0, θ) = 0.

Algorithms: If Λ = 0 and x ≤ x, set P = {p∗u}, θ(p∗u) = θ∗u, σ(p∗u) = B/θ∗u and
V̄ u = V u(p∗u, 0, θ

∗
u) = e−θ

∗
uv. For p ≤ u, set θ to satisfy V̄ u = V u(p, 0, θ) or, if there is no

solution to this equation, set θ(p) = 0. For p > u set θ(p) = 0

If Λ = 0 and x > x, set P = {u} and θ(u) = θu, where θu satisfies V s(u, 0, θu) = 0. Set
σ(u) = B/θu and V̄ u = V u(u, 0, θu). For p 6= u, set θ as above.

A.3 Algorithm for Constructing Post-Policy DSE

Solution to Problem P1: Ignoring (for now) the financial constraint p ≤ c, the solution
to problem P1 satisfies the two remaining constraints with equality, V s(p∗c , λ

∗
c , θ
∗
c ) = 0 and

V u(p∗c , λ
∗
c , θ
∗
c ) = V̄ u, and the following first-order condition.

e−θ
∗
cp∗c =

(
1−

[
1− e−θ∗c − θ∗ce−θ

∗
c
]
v − x

(1− λ∗c)θ∗c
1

V̄ u − V̄ c

)

×
(

1− e−(1−λ∗c)θ∗c − (1− λ∗c)θ∗ce−(1−λ∗c)θ∗c

(1− λ∗c)θ∗c
(v − u) + (1− λ∗c)λ∗cθ∗ce−(1−λ∗c)θ∗c (u− c)

)
where V̄ c = V c(p∗c , λ

∗
c , θ
∗
c ) and V̄ u is set equal to the maximized objective of problem P1. Now

taking into account the constraint imposed by bidding limit c, the solution is p = min{c, p∗c}
with λ and θ satisfying V s(p, λ, θ) = 0 and V u(p, λ, θ) = V̄ u.

Algorithm: If x ∈ (x, x] and Λ ≤ λ∗c , set P = {p∗c , p∗u}, λ(p∗u) = 0, θ(p∗u) = θ∗u, λ(p∗c) = λ∗c ,
θ(p∗c) = θ∗c , σ(p∗u) = (λ∗c − Λ)B/(λ∗cθ∗u) and σ(p∗c) = ΛB/λ∗cθ∗c . The equilibrium values are
V̄ u = V u(p∗u, 0, θ

∗
u) = V u(p∗c , λ

∗
c , θ
∗
c ) and V̄ c = V c(p∗c , λ

∗
c , θ
∗
c ). For p ≤ c, set λ and θ to satisfy

V̄ u = V u(p, λ(p), θ(p)) and V̄ c = V c(p, λ(p), θ(p)). If there is no solution to these equations
with λ(p) > 0, set λ(p) = 0 and θ to satisfy V̄ u = V u(p, 0, θ(p)). If there is no solution to
these equations with λ(p) < 1, set λ(p) = 1 and θ to satisfy V̄ c = V c(p, 1, θ(p)). If there is
still no solution with λ(p) ∈ [0, 1] and θ(p) ≥ 0, set λ(p) arbitrarily and set θ(p) = 0. For
p ∈ (c, u], set λ(p) = 0 and θ to satisfy V̄ u = V u(p, 0, θ(p)) or, if there is no solution to this
equation, set θ(p) = 0. Finally, for p > u, set λ(p) = 0 and θ(p) = 0.
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A.4 Graphical Illustration of the Model’s Predictions

Implication 1. The MI policy motivates some sellers to change their asking price from p0

to p1 = c.

• If p∗u ≤ c, an increase from p∗u to c (bunching from below)

• If p∗u > c, a decrease from p∗u to c (bunching from above)

(1). Equilibrium Asking Price: p∗u < c:
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Figure 11: Asking Price CDF

(2). Equilibrium Asking Price: p∗u > c:
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Figure 12: Ask Price CDF
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Implication 2. The MI drives up market tightness (θ) just below c, with a discontinuous
decline in bidding intensity at c. This results in a lower (higher) incidence of price escalation
up to u if p∗u ≤ c (p∗u > c).

(1). Equilibrium Buyer-Seller Ratio: p∗u < c
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Figure 13: Market Tightness as a Function of the Asking Price

(2). Equilibrium Buyer-Seller Ratio: p∗u > c
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Figure 14: Market Tightness as a Function of the Asking Price
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Implication 3. The MI has a less dramatic impact on sales price relative to asking price.

• If p∗u ≤ c, an increase from p∗u to c (bunching from below) and a decrease from u to c
(bunching from above)

• If p∗u > c, a decrease from p∗u to c (bunching from above)

(1). Equilibrium Sales Price: p∗u < c
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Figure 15: Sales Price CDF

(2). Equilibrium Sales Price: p∗u > c
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Figure 16: Sales Price CDF
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Implication 4. The share of activity in submarket c (relative to submarket p∗u) is increasing
in Λ.

(1). Equilibrium Average Asking and Sales Price: p∗u < c
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Figure 17: Average Price vs. Λ

(2). Equilibrium Average Asking and Sales Price: p∗u > c
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Figure 18: Average Price vs. Λ
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